K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 1:

Ta có:

$x^2+x+1=\sin x\leq 1$

$\Leftrightarrow x(x+1)\leq 0$

$\Leftrightarrow -1\leq x\leq 0$

Với $x\in [-1;0]$ thì hàm $\sin x$ là hàm đồng biến. Do đó:

$\sin x\leq \sin (0)=0(*)$

Mà theo đề bài:

$\sin x=x^2+x+1=(x^2+x+\frac{1}{4})+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$ (mâu thuẫn với $(*)$)

Vậy PT vô nghiệm.

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Câu 2:

PT $\Leftrightarrow x^2-2x\sin x+\sin ^2x-\sin ^2x-2\cos x+2=0$

$\Leftrightarrow (x^2-2x\sin x+\sin ^2x)+(\cos ^2x-1-2\cos x+2)=0$

$\Leftrightarrow (x-\sin x)^2+(\cos x-1)^2=0$

$\Rightarrow x-\sin x=\cos x-1=0$

$\Leftrightarrow x=\sin x; \cos x=1$

$\Rightarrow x=0$

12 tháng 8 2017

2cos2x+7sin22x=0

Bạn áp dung CT: sina=2sina.cosa là ra

pt<=>2cos2x+7.(2.sinx.cosx)2=0

<=>2cos2x+7.4.sin2x.cos2x=0

<=>2cos2x+28sin2x.cos2x=0

<=>2cos2x.(1+14sin2x)=0

<=>\(\left[{}\begin{matrix}cosx=0\\sin^2x=\dfrac{-1}{14}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\dfrac{\Pi}{2}+k\Pi\\vn\end{matrix}\right.\) (k thuộc Z)

12 tháng 8 2017

2cosx(1-sinx)+\(\sqrt{3}\)cos2x=0

<=>2cosx-2sinx.cosx+\(\sqrt{3}\)cos2x=0

<=>2cosx-sin2x+\(\sqrt{3}\)cos2x=0 (2sinx.cosx=sin2x)

<=>2cosx=sin2x-\(\sqrt{3}\)cos2x (*)

Tới đây bạn xem sách giáo khoa trang 35 nhé, người ta hướng dẫn kĩ lắm rồi đấy hihi!

(*)<=>2cosx=2sin(2x-\(\dfrac{\Pi}{3}\))

<=>cosx=sin(2x-\(\dfrac{\Pi}{3}\))

Tới đây bạn áp dung công thức Phụ Chéo (hình như cuối năm lớp 10 học rồi):

TỔng quát: cosx=sin(\(\dfrac{\Pi}{2}\)-x)

pt<=>sin(\(\dfrac{\Pi}{2}\)-x)=sin(2x-\(\dfrac{\Pi}{3}\))

<=>\(\left[{}\begin{matrix}\dfrac{\Pi}{2}-x=2x-\dfrac{\Pi}{3}\\\dfrac{\Pi}{2}-x=\Pi-2x+\dfrac{\Pi}{3}\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=\dfrac{5\Pi}{18}+\dfrac{k2\Pi}{3}\\x=\dfrac{5\Pi}{6}+k2\Pi\end{matrix}\right.\)(k thuộc Z)

Chúc bạn học tốt!

Có gì bạn vào tìm kiếm, gõ"0941487990" kết bạn facebook, inbox có gì giúp dc thì mình giúp cho!

NV
20 tháng 5 2020

a/ \(f'\left(x\right)=2sinx.cosx-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\) \(\Rightarrow x=k\pi\)

b/ \(f'\left(x\right)=cosx+sin4x+sin6x=0\)

\(\Leftrightarrow cosx+2sin5x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin5x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\sin5x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\5x=-\frac{\pi}{6}+k2\pi\\5x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=-\frac{\pi}{30}+\frac{k2\pi}{5}\\x=-\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

20 tháng 5 2020

Mình cảm ơn bạn, bạn có thể giúp mình làm thêm một số bài nữa được không ạ?

NV
22 tháng 8 2020

\(\Leftrightarrow2cosx-sinx-4sin^2x.cosx+2sin^3x=sin^3x+cos^3x\)

\(\Leftrightarrow sin^3x-cos^3x-4sin^2x.cosx+2cosx-sinx=0\)

- Với \(\left\{{}\begin{matrix}cosx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\) là nghiệm của pt

- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)

\(tan^3x-1-4tan^2x+2\left(1+tan^2x\right)-tanx\left(1+tan^2x\right)=0\)

\(\Leftrightarrow-2tan^2x-tanx+3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{2}\right)+k\pi\end{matrix}\right.\)

NV
27 tháng 10 2020

1.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)

\(\Leftrightarrow8m.sin2x-3cos2x=5\)

Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)

\(\Leftrightarrow...\)

NV
8 tháng 8 2020

d.

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)

\(\Leftrightarrow sin^2x-cos^2x=0\)

\(\Leftrightarrow-cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

e. Đề thiếu

f.

\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)

\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
8 tháng 8 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b.

\(\Leftrightarrow sin2x=1\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

c.

\(\Leftrightarrow2sin2x.cos2x=-1\)

\(\Leftrightarrow sin4x=-1\)

\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

NV
24 tháng 10 2019

1/ \(sinx=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

b/ \(cos=-\frac{\sqrt{2}}{2}=cos\left(\frac{3\pi}{4}\right)\)

\(\Rightarrow x=\pm\frac{3\pi}{4}+k2\pi\)

c/ \(tanx=\sqrt{3}=tan\left(\frac{\pi}{3}\right)\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

d/ \(cotx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)

NV
24 tháng 10 2019

2/

a/ \(sin^2x+sinx-2=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-2\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

b/ \(cot^2x-2cotx-3=0\)

\(\Leftrightarrow\left(cotx+1\right)\left(cotx-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot3+k\pi\end{matrix}\right.\)

3/ \(\Leftrightarrow1-cos2x+1-cos4x+1-cos6x=3\)

\(\Leftrightarrow cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2coss4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(2cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\frac{2\pi}{3}+k2\pi\\2x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

11 tháng 9 2016

a)pt\(\Leftrightarrow cosx\left(cosx+1\right)+sinx.sin^2x=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)+sinx\left(1-cos^2x\right)=0\)

\(\Leftrightarrow\left(cosx+1\right)\left(cosx+sinx-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cosx=1\Leftrightarrow x=\pi+k2\pi\\cosx+sinx-sinx.cosx=0\left(\cdot\right)\end{array}\right.\)

Xét pt(*):

Đặt \(t=cosx+sinx,t\in\left[-\sqrt{2};\sqrt{2}\right]\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

(*) trở thành:\(t^2-2t-1=0\Leftrightarrow\left[\begin{array}{nghiempt}t=1-\sqrt{2}\\t=1+\sqrt{2}\left(L\right)\end{array}\right.\)

+)\(t=1-\sqrt{2}\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\\ \Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{\pi}{4}+arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\\x=-\frac{5\pi}{4}-arcsin\left(\frac{-2+\sqrt{2}}{2}\right)+k2\pi\end{cases}\left(k\in Z\right)}\)

NV
14 tháng 9 2020

a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)

\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)

Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)

b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)

\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)

\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)

c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)

\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)

\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)

NV
29 tháng 10 2020

1d.

Đề ko rõ

1e.

\(\Leftrightarrow\left(4cos^3x-3cosx\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(4cos^2x-3\right)^2.cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left(2cos2x-1\right)^2cos2x-cos^2x=0\)

\(\Leftrightarrow cos^2x\left[\left(2cos2x-1\right)^2.cos2x-1\right]=0\)

\(\Leftrightarrow cos^2x\left(4cos^32x-4cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow cos^2x\left(cos2x-1\right)\left(4cos^22x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
29 tháng 10 2020

2b.

Đề thiếu

2c.

Nhận thấy \(cos2x=0\) ko phải nghiệm, chia 2 vế cho \(cos^32x\)

\(\frac{8sin^22x}{cos^22x}=\frac{\sqrt{3}sin2x}{cos2x}.\frac{1}{cos^22x}+\frac{1}{cos^22x}\)

\(\Leftrightarrow8tan^22x=\sqrt{3}tan2x\left(1+tan^22x\right)+1+tan^22x\)

\(\Leftrightarrow\sqrt{3}tan^32x-7tan^22x+\sqrt{3}tan2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1}{\sqrt{3}}\\tanx=\sqrt{3}-2\\tanx=\sqrt{3}+2\end{matrix}\right.\)

\(\Leftrightarrow...\)