Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải các phương trình và hệ phương trình:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)
Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)
Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)



Điều kiện : \(x\ge-1\)
Xét hàm số trên [\(-1;+\infty\) ) : \(f\left(x\right)=x^3-3x^2-8x+40\)
\(g\left(x\right)=8\sqrt[4]{4x+4}\)
Theo bất đẳng thức Cauchy, ta có :
\(g\left(x\right)=\sqrt[4]{2^4.2^4.2^4\left(5x+4\right)}\le\frac{2^4+2^4+2^4+\left(4x+4\right)}{4}=x+13\) (2)
Dấu bằng ở (2) xảy ra khi và chỉ khi x = 3
Mặt khác :
\(f\left(x\right)-\left(x+13\right)=x^3-3x^2-9x+27=\left(x-3\right)^2\left(x+3\right)\ge0\) với mọi \(x\ge-1\) (3)
Dấu bằng ở (3) xảy ra khi và chỉ khi x = 3. Ta có :
\(\left(1\right)\Leftrightarrow f\left(x\right)=g\left(x\right)\) (4)
Vậy (4) có nghĩa là dấu bằng ở (2) và (3) đồng thời xảy ra,hay x = 3 (thỏa mãn điều kiện)
Phương trình đã cho có nghiệm duy nhất x = 3

Tập xác định : D=R. Phương trình đã cho tương đương với :
\(\frac{1}{8}\left(4x-4\right)^2-\frac{7}{4}\left(4x-4\right)+12-3\sqrt[3]{4x-4}=0\) (1)
Đặt \(t=\sqrt[3]{4x-4}\) thay vào phương trình (1) ta có :
\(t^6-14t^3-24t+96=0\)
hay :
\(\left(t-2\right)^2\left(t^4+4t^3+12t^2+18t+24\right)=0\) (2)
Nếu \(t\le0\) thì \(t^6-14t^3-24t+96>0\)
Nếu t > 0 thì \(t^4+4t^3+12t^2+18t+24>0\)
Do đó (2) <=> \(t=2\Rightarrow x=3\)

a) Tương đương. vì nhân hai vế bất phương trình thứ nhất với -1 và đổi chiều bất phương trình thì được bất phương trình thứ 2.
b) Chuyển vế các hạng tử vế phải và đổi dấu ở bất phương trình thứ nhất thì được bất phương trình thứ tương đương.
c) Tương đương. Vì cộng hai vế bất phương trình thứ nhất với với mọi x ta được bất phương trình thứ 3.
d) Điều kiện xác định bất phương trình thứ nhất: D ={x ≥ 1}.
2x + 1 > 0 ∀x ∈ D. Nhân hai vế bất phương trình thứ hai. Vậy bất phương trình tương đương.

Bấm MODE nhập 5 nhập 3
a, bấm 5 = -3 = -7 = ta được \(x_1=\dfrac{3+\sqrt{149}}{10};x_2=\dfrac{3-\sqrt{149}}{10}\)
Tương tự cho các câu còn lại

a/ ĐKXĐ: ...
\(\Leftrightarrow4x^2-4x+1-\left(2x-\sqrt{4x-1}\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\frac{\left(2x-1\right)^2}{2x+\sqrt{4x-1}}=0\)
\(\Leftrightarrow\left(2x-1\right)^2\left(1-\frac{1}{2x+\sqrt{4x-1}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\2x+\sqrt{4x-1}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4x-1}=1-2x\) (\(x\le\frac{1}{2}\))
\(\Leftrightarrow4x-1=\left(1-2x\right)^2\)
\(\Leftrightarrow4x-1=4x^2-4x+1\)
\(\Leftrightarrow2x^2-4x+1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2+\sqrt{2}}{2}\left(l\right)\\x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
b/
Đặt \(3x^2-2x+2=a>0\) ta được:
\(\sqrt{a+7}+\sqrt{a}=7\)
\(\Leftrightarrow2a+7+2\sqrt{a^2+7a}=49\)
\(\Leftrightarrow\sqrt{a^2+7a}=21-a\) (\(a\le21\))
\(\Leftrightarrow a^2+7a=\left(21-a\right)^2\)
\(\Leftrightarrow a^2+7a=a^2-42a+441\)
\(\Rightarrow a=9\Rightarrow3x^2-2x+2=9\)
\(\Leftrightarrow3x^2-2x-7=0\Rightarrow x=\frac{1\pm\sqrt{22}}{3}\)
Phương trình tương đương với \(2.\left(4^x\right)^2-15.4^x-8=0\)
Đặt \(t=4^x,t>0\), phương trình trở thành :
\(2t^2-15t-8=0\Leftrightarrow\left[\begin{array}{nghiempt}t=8\\t=-\frac{1}{2}\left(1\right)\end{array}\right.\)
Với \(t=8\) ta có \(4^x=8\Leftrightarrow2^{2x}=2^3\Leftrightarrow x=\frac{3}{2}\)
Vậy nghiệm của phương trình là \(x=\frac{3}{2}\)