K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

ĐK \(x;y\ge0\)

Ta có hệ \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=10\left(1\right)\\\sqrt{x+6}+\sqrt{y+6}=14\left(2\right)\end{cases}}\)

Từ (1) ta có \(\sqrt{x}+\sqrt{y}=10\Rightarrow x+y+2\sqrt{xy}=100\Rightarrow x+y=100-2\sqrt{xy}\)

Từ (2) ta có \(\sqrt{x+6}+\sqrt{y+6}=14\Rightarrow x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}=196\)

\(\Rightarrow100-2\sqrt{xy}+12+2\sqrt{\left(x+6\right)\left(y+6\right)}=196\)

\(\Rightarrow\sqrt{\left(x+6\right)\left(y+6\right)}=42+\sqrt{xy}\Rightarrow xy+6x+6y+36=1764+84\sqrt{xy}+xy\)

\(\Leftrightarrow6\left(x+y\right)=1728+84\sqrt{xy}\Rightarrow6\left(100-2\sqrt{xy}\right)=1728+84\sqrt{xy}\)

\(\Leftrightarrow-1128=96\sqrt{xy}\left(ktm\right)\)

Vậy hệ vô nghiệm 

1 tháng 8 2017

Đk \(x;y\ge0\)

Ta có hệ \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=4\left(1\right)\\\sqrt{x+5}+\sqrt{y+5}=6\left(2\right)\end{cases}}\)

Từ (1) ta có \(\sqrt{x}+\sqrt{y}=4\Rightarrow x+y+2\sqrt{xy}=16\Rightarrow x+y=16-2\sqrt{xy}\)

Từ (2) ta có \(\sqrt{x+5}+\sqrt{y+5}=6\Rightarrow x+5+y+5+2\sqrt{\left(x+5\right)\left(y+5\right)}=36\)

\(\Rightarrow16-2\sqrt{xy}+10+2\sqrt{\left(x+5\right)\left(y+5\right)}=36\)

\(\Leftrightarrow2\sqrt{\left(x+5\right)\left(y+5\right)}=10+2\sqrt{xy}\)

\(\Leftrightarrow4\left(xy+5x+5y+25\right)=100+40\sqrt{xy}+4xy\)

\(\Leftrightarrow x+y-2\sqrt{xy}=0\Leftrightarrow\sqrt{x}=\sqrt{y}\Leftrightarrow x=y\)

\(\Rightarrow\sqrt{x}+\sqrt{x}=4\Leftrightarrow x=4\Rightarrow y=4\)

Vậy  hệ có nghiệm \(\left(x;y\right)=\left(4;4\right)\)

23 tháng 12 2019

hệ phương trình bậc cao thế 

31 tháng 7 2017

Đặt \(\sqrt{x}=a;\sqrt{y}=b\left(a,b>0\right)\) thì có:

\(\hept{\begin{cases}a^3+b^3=2ab\\a+b=2\end{cases}}\). Khi đó xét pt(1)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2-2\right)=0\)

*)Xét \(a+b=0\Rightarrow a=-b\Rightarrow a=b=0\) (loại)

*)Xét \(a^2-ab+b^2-2=0\Rightarrow a^2+b^2-ab=2\)

Do \(a,b\ge0\) nên xài AM-GM ta có:

\(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab=2\)

Và \(ab\le\frac{\left(a+b\right)^2}{4}=2\) Xảy ra khi \(a=b=1\) (thỏa)

Vậy nghiệm hpt là \(a=b=1\)

31 tháng 7 2017

Đặt √x=a;√y=b,ta có;a^3+b^3=2ab;a+b=2>>>(a+b)(a^2-ab+b^2)=2(a^2-ab+b^2)=2ab

a^2-ab+b^2=ab >>>(a-b)^2=0 >>>a=b>>>x=y=1

9 tháng 3 2020

c.ơn

10 tháng 4 2016

 x+y+z=6 (1) => (x + y + z)2 = 36 (4)

 xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)

 x2+y2+z2=14 (3)

Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2

Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:

y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3

Với y = 3 => x+ z = 9/3 = 3

Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1

Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)

12 tháng 4 2016

 x+y+z=6 (1) => (x + y + z)2 = 36 (4)

 xy+yz-zx=7(2) <=> xy + yz + xz = 7 + 2xz <=> 2xy + 2yz + 2xz = 14 + 4xz (5)

 x2+y2+z2=14 (3)

Cộng (5) với (3) theo vế với vế được: (x + y + z)2 = 28 + 4 xz <=> 36 = 28 + 4xz => xz = 2

Thay xz = 2 vào (2) => xy + yz = 9 <=> y (x + z) = 9=> x + z = 9/y (ykhác 0) Thay vào (1) ta có:

y + 9/y = 6 <=> y2 - 6y + 9 = 0<=> (y-3)2 = 0 => y= 3

Với y = 3 => x+ z = 9/3 = 3

Do đó x và z là nghiệm của PT: t2 - 3t + 2 = 0 => x=1; z = 2 hoặc x=2; z =1

Vậy HPT cho có 2 nghiệm (x;y;z) là (1; 3; 2) hoặc (2; 3; 1)

2 tháng 8 2017

Ta có hệ \(\hept{\begin{cases}x^2+y^2-3x+4y=1\\3x^2-2y^2-9x-8y=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+3y^2-9x+12y=3\left(1\right)\\3x^2-2y^2-9x-8y=3\left(2\right)\end{cases}}}\)

Lấy (1)-(2) ta có \(5y^2+20y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-4\end{cases}}\)

Với \(y=0\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)

Với \(y=-4\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)

Vậy hệ có 4 nghiệm \(\left(x;y\right)=\left(0;\frac{3+\sqrt{13}}{2}\right);\left(0;\frac{3-\sqrt{13}}{2}\right);\left(-4;\frac{3+\sqrt{13}}{2}\right);\left(-4;\frac{3-\sqrt{13}}{2}\right)\)