
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


`a^3+b^3+c^3=3abc`
`=>a^3+b^3+c^3-3abc=0`
`=>(a+b)^3-3ab(a+b)-3abc+c^3=0`
`=>(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0`
`=>(a+b+c)(a^2+b^2+c^2-ac-bc+c^2-3ab)=0`
`=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`TH1:a+b+c=0`
`=>a+b=-c`
`=>a^2+2ab+b^2=c^2`
`=>a^2+b^2-c^2=-2ab`
Tương tự ta được: `a^2+c^2-b^2=-2ac;b^2+c^2-a^2=-2bc`
`=>D=(ab^2)/(-2ab)+(bc^2)/(-2bc)+(ca^2)/(-2ac)`
`=-(a+b+c)/2=0`
`TH2:a^2+b^2+c^2-ac-ab-bc=0`
`=>2a^2+2b^2+2c^2-2ac-2ab-2bc=0`
`=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`=>{(a-b=0),(b-c=0),(c-a=0):}` (vô lý)
Vậy: `D=0`


a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.

a) Dùng trong công cụ
để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.
b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ điểm C sao cho BC = 4 cm.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm B, nhập bán kính bằng 4.
Chọn công cụ → Chọn
→ Chọn điểm C bất kỳ nằm trên đường tròn tâm B.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm C, nhập bán kính bằng 4.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột đường tròn tâm A và đường tròn C.
Chọn công cụ để nối B với C, C với D, D với A.
Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.
Bài 6.
Ta có: \(x+y=5\) ; \(xy=3\)
\(\Leftrightarrow\left(x+y\right)^2=5^2\)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+y^2=25-2\cdot3=19\) ( vì \(xy=3\))
Mặt khác: \(x+y=5\Leftrightarrow\left(x+y\right)^3=5^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=125\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=125\)
\(\Leftrightarrow x^3+y^3=125-3\cdot3\cdot5=80\) (vì \(x+y=5;xy=3\))
Khi đó: \(x^2+y^2-2xy=19-2\cdot3\)
\(\Leftrightarrow\left(x-y\right)^2=13\)
\(\Leftrightarrow x-y=\sqrt{13}\)
#\(Ayumu\)
còn Bài 7?