
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\)
\(=\frac{2}{\sqrt{xy}}+\frac{x+y}{xy}=\frac{x+y+2\sqrt{xy}}{xy}=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\)
\(\frac{\sqrt{x^3}+x\cdot\sqrt{y}+y\cdot\sqrt{x}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(=\frac{\left(x\cdot\sqrt{x}+x\cdot\sqrt{y}+y\cdot\sqrt{x}+y\cdot\sqrt{y}\right)}{x\cdot\sqrt{xy}+y\cdot\sqrt{xy}}=\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
\(P=\left\lbrack\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\cdot\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right\rbrack:\left(\frac{\sqrt{x^3}+x\cdot\sqrt{y}+y\cdot\sqrt{x}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}:\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
nhu nay bn nhe a: \(\left(\right. \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \left.\right) \cdot \frac{2}{\sqrt{x} + \sqrt{y}} + \frac{1}{x} + \frac{1}{y}\)
\(= \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}} \cdot \frac{2}{\sqrt{x} + \sqrt{y}} + \frac{x + y}{x y}\)
\(= \frac{2}{\sqrt{x y}} + \frac{x + y}{x y} = \frac{x + y + 2 \sqrt{x y}}{x y} = \frac{\left(\left(\right. \sqrt{x} + \sqrt{y} \left.\right)\right)^{2}}{x y}\)
\(\frac{\sqrt{x^{3}} + x \cdot \sqrt{y} + y \cdot \sqrt{x} + \sqrt{y^{3}}}{\sqrt{x^{3} y} + \sqrt{x y^{3}}}\)
\(= \frac{\left(\right. x \cdot \sqrt{x} + x \cdot \sqrt{y} + y \cdot \sqrt{x} + y \cdot \sqrt{y} \left.\right)}{x \cdot \sqrt{x y} + y \cdot \sqrt{x y}} = \frac{\left(\right. x + y \left.\right) \left(\right. \sqrt{x} + \sqrt{y} \left.\right)}{\sqrt{x y} \left(\right. x + y \left.\right)} = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}}\)
\(P = \left[\right. \left(\right. \frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} \left.\right) \cdot \frac{2}{\sqrt{x} + \sqrt{y}} + \frac{1}{x} + \frac{1}{y} \left]\right. : \left(\right. \frac{\sqrt{x^{3}} + x \cdot \sqrt{y} + y \cdot \sqrt{x} + \sqrt{y^{3}}}{\sqrt{x^{3} y} + \sqrt{x y^{3}}} \left.\right)\)
\(= \frac{\left(\left(\right. \sqrt{x} + \sqrt{y} \left.\right)\right)^{2}}{x y} : \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}} = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x y}}\)

b) \(\sqrt{x^2}=\left|-8\right|\)
\(\Rightarrow\left|x\right|=8\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
d) \(\sqrt{9x^2}=\left|-12\right|\)
\(\Rightarrow\sqrt{\left(3x\right)^2}=12\)
\(\Rightarrow\left|3x\right|=12\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{3}\\x=-\dfrac{12}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>=-1\end{matrix}\right.\)
=>\(x>=\dfrac{3}{2}\)
\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)
=>\(\dfrac{2x-3-x-1}{\sqrt{2x-3}+\sqrt{x+1}}-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x+1}}-1\right)=0\)
=>x-4=0
=>x=4(nhận)

Mình không thấy câu nào cả thì giúp kiểu gì lỗi ảnh hay sao ý

ĐKXĐ: \(x+2y\ne0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x+2y}=\dfrac{7}{4}\\-\dfrac{5}{2}x+2+\dfrac{4}{x+2y}=-2\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+2y}=z\) ta được hệ:
\(\left\{{}\begin{matrix}x-z=\dfrac{7}{4}\\-\dfrac{5}{2}x+4z=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\z=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x+2y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

a: Xét (HA/2) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE⊥AB tại E
Xét (HA/2) có
ΔAFH nội tiếp
AH là đường kính
Do đó: ΔAFH vuông tại F
=>HF⊥AC tại F
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)
Ta có: \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(\hat{AFE}=\hat{AHE}\)
mà \(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{AFE}=\hat{ABC}\)
ΔOAC cân tại O
=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)
\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AO⊥ FE
c: Xét (O) có
ΔAKH nội tiếp
AH là đường kính
Do đó: ΔAKH vuông tại K
=>HK⊥AT tại K
Xét ΔAHT vuông tại H có HK là đường cao
nên \(AK\cdot AT=AH^2\)
=>\(AK\cdot AT=AE\cdot AB\)
=>\(\frac{AK}{AE}=\frac{AB}{AT}\)
Xét ΔAKB và ΔAET có
\(\frac{AK}{AE}=\frac{AB}{AT}\)
góc KAB chung
Do đó: ΔAKB~ΔAET
=>\(\hat{AKB}=\hat{AET}\)
d: ta có: A,C,B,K cùng thuộc (O)
=>ACBK nội tiếp
=>\(\hat{ACB}+\hat{AKB}=180^0\)
mà \(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)
nên \(\hat{IKA}=\hat{ICB}\)
Xét ΔIKA và ΔICB có
\(\hat{IKA}=\hat{ICB}\)
góc KIA chung
Do đó: ΔIKA~ΔICB

Gọi H là trực tâm của ΔABC
=>BH⊥AC; CH⊥AB; AH⊥BC
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥AB
nên CH//BD
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CA⊥CD
mà BH⊥CA
nên BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà X là trung điểm của BC
nên X là trung điểm của DH
=>DX đi qua H(1)
Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó: ΔBCE vuông tại C
=>CB⊥CE
mà AH⊥CB
nên AH//CE
Xét (O) có
ΔEAB nội tiếp
BE là đường kính
Do đó: ΔBAE vuông tại A
=>AE⊥AB
mà CH⊥AB
nên AE//CH
Xét tứ giác AHCE có
AH//CE
AE//CH
Do đó: AHCE là hình bình hành
=>AC cắt HE tại trung điểm của mỗi đường
mà Y là trung điểm của AC
nên Y là trung điểm của EH
=>EY đi qua H(2)
Xét (O) có
ΔFAC nội tiếp
FC là đường kính
Do đó: ΔFAC vuông tại A
=>AF⊥ AC
mà BH⊥AC
nên AF//BH
Xét (O) có
ΔFBC nội tiếp
FC là đường kính
Do đó: ΔFBC vuông tại B
=>BF⊥BC
mà AH⊥BC
nên AH//BF
Xét tứ giác AHBF có
AH//BF
AF//BH
Do đó: AHBF là hình bình hành
=>AB cắt HF tại trung điểm của mỗi đường
mà Z là trung điểm của AB
nên Z là trung điểm của FH
=>FZ đi qua H(3)
Từ (1),(2),(3) suy ra DX,EY,FZ đồng quy tại H

Gọi \(\angle A O C = \alpha\). Đây là góc ở tâm chắn cung \(A C\)
Quan sát hình: cung \(B D\) gồm 3 lần liên tiếp cung \(A C\) (từ B → C, C → A, A → D)
Góc ở tâm \(\angle B O D\) chắn cung \(B D\) nên:
\(\angle B O D = 3 \times \angle A O C .\)
Vậy \(\angle B O D = 3 \angle A O C\)
bạn giải hay quá, mong bạn rèn chữ<3