\(x+y+z=3\)

\(\frac{1}{x}+\frac{1}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

vs pt 3 : y=1-2z2 (4)

thế vào PT 1 : x +1-2z2+z=3

                       x =2z2-z+2(5)

thế 4, 5 vào 2 :1/2z2-z+2+1/1-2z2+1/z=1/3

giải pt 1 ẩn trên ta dc x=2,y=0,5,z=-0,5

1 tháng 8 2020

bạn Thiên Hàn cmt linh tinh j vậy, có tin là mình sẽ báo cáo câu trl của bn ko ? ko ddc nói bậy nhé

6 tháng 11 2017

Ta có \(y=1-2z^2;x=3-y-z=2z^2-z+2\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\Rightarrow\frac{3\left(yz+xz+xy\right)}{3xyz}=\frac{xyz}{3xyz}\)

\(\Rightarrow3z\left(1-2z^2\right)+3z\left(2z^2-z+2\right)+3\left(1-2z^2\right)\left(2z^2-z+2\right)\)

\(=z\left(1-2z^2\right)\left(2z^2-z+2\right)\)

\(\Leftrightarrow4z^5-14z^4+8z^3-8z^2+4z+6=0\)

\(\Leftrightarrow z=1\vee z=3\vee z=-\frac{1}{2}\)

Với z = 1, ta có y = -1, x = 3

Với z = 3, x = 17, y = -17

Với \(z=-\frac{1}{2},x=3,y=\frac{1}{2}\)

Tóm lại hệ có 3 nghiệm \(\left(3;-1;1\right),\left(17;-17;3\right),\left(3;\frac{1}{2};-\frac{1}{2}\right)\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 10 2019

Ta di chung minh

\(\frac{1}{x^2+y^2+1}+\frac{1}{y^2+z^2+1}+\frac{1}{z^2+x^2+1}\le1\)

\(\Leftrightarrow\frac{x^2+y^2}{x^2+y^2+1}+\frac{y^2+z^2}{y^2+z^2+1}+\frac{z^2+x^2}{z^2+x^2+1}\ge2\)

\(VT\ge\frac{\left(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\right)^2}{2\left(x^2+y^2+z^2\right)+3}\left(1\right)\)

Gio chung minh:

\(VT_{\left(1\right)}\ge2\)

\(\Leftrightarrow\left(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\right)^2\ge4\left(x^2+y^2+z^2\right)+6\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}+\sqrt{\left(y^2+z^2\right)\left(z^2+x^2\right)}+\sqrt{\left(z^2+x^2\right)\left(x^2+y^2\right)}\ge x^2+y^2+z^2+3\left(2\right)\)

Ta co:

\(\sqrt{\left(x^2+y^2\right)\left(y^2+z^2\right)}=\sqrt{\left(x^2+y^2\right)\left(z^2+y^2\right)}\ge zx+y^2\)

The same

\(\Rightarrow VT_2\ge x^2+y^2+z^2+xy+yz+zx\)

Chung minh:

\(VT_2\ge x^2+y^2+z^2+3\)

\(\Leftrightarrow xy+yz+zx\ge3\)

Ta lai co:

\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)

Dau '=' xay ra khi \(x=y=z=1\)

11 tháng 11 2019

MaiLink hình như sai rồi bạn, dòng 5 bị ngược dấu

2 tháng 10 2019

\(\hept{\begin{cases}x+y+z=3\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\left(2\right)\\x^2+y^2+z^2=17\left(3\right)\end{cases}}\left(DK:x,y,z\ne0\right)\)

Ta co:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=3>\frac{1}{3}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{3}\)

Vay HPT vo nghiem