K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

7 tháng 1 2018

a) A=852+2.85.15+152=(85+15)2=1002=10000
b) B=(20-19)(20+19)+(18-17)(18+17)+...+(2-1)(2+1)=20+19+18+17+...+2+1= 20.21/2=210

7 tháng 1 2018

a, A= 852 + 170.15 + 225

    A= ( 85+ 15)2

    A= 1002

     A= 10000

21 tháng 7 2017

Giải:

a) Sửa đề: 1272 + 146.127 + 732

\(127^2+146.127+73^2=\left(127+7\right)^2=200^2=40000\)

b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^4-1\right)^2=18^8-18^8-1=-1\)

c) \(20^2+18^2+16^2+...+4^2+2^2-\left(19^2+17^2+...+3^2+1\right)\)

\(=20^2+18^2+16^2+...+4^2+2^2-19^2-17^2-...-3^2-1\)

\(=\left(20^2-19^2\right)+\left(18^2-17^2\right)+\left(16^2-15^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1\right)\)

\(=20+19+18+17+16+15+...+4+3+2+1\)

\(=\dfrac{\left(20+1\right).20}{2}=210\)

Chúc bạn học tốt!

22 tháng 7 2017

thanks bạn nhiều nha!!!
mà Trần Hoàng Nghĩa ơi, câu a mk k có ghi sai đề đâu, bn có thể giải giúp mk câu a với đề là 1722 + 146.127 + 722 dc k?

a: \(=\left(2-1\right)\left(2+1\right)+\left(4+3\right)\left(4-3\right)+...+\left(20-19\right)\left(20+19\right)\)

\(=1+2+...+19+20\)

\(=21\cdot\dfrac{20}{2}=21\cdot10=210\)

b: \(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1+2+...+99+100\)

=5050

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

17 tháng 7 2017

Làm mẫu 2 câu nha!

a, \(x^2+x+1=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

với mọi giá trị của \(x\in R\)

Để \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\) thì \(\left(x+\dfrac{1}{2}\right)^2=0\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy....................

b, \(x^2-3x+1=x^2-1,5x-1,5x+2,25-1,25\)

\(=\left(x-1,5\right)^2-1,25\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-1,5\right)^2\ge0\Rightarrow\left(x-1,5\right)^2-1,25\ge-1,25\)

với mọi giá trị của \(x\in R\)

Để \(\left(x-1,5\right)^2-1,25=-1,25\) thì \(\left(x-1,5\right)^2=0\)

\(\Rightarrow x=1,5\)

Vậy................. CHúc bạn học tốt!!!

17 tháng 7 2017

Những hằng đẳng thức đáng nhớNhững hằng đẳng thức đáng nhớNhững hằng đẳng thức đáng nhớ

Bài 1: a) Cho a + b + c = 9, a2 + b2 + c2 = 141. Tính giá trị biểu thức M = ab + bc + cab) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3c) Cho x + y = a; x2 + y2 = b, x3 + y3 = c. Tính giá trị của biểu thức N = a3 - 3ab + 2cd) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x3 - y3 theo a và be) Cho x + y = a, x2 + y2 = b. Tính giá trị của biểu thức E = x3 + y3 theo a và bf) Cho x + y = 1, xy= -1. Tính...
Đọc tiếp

Bài 1: 
a) Cho a + b + c = 9, a+ b+ c= 141. Tính giá trị biểu thức M = ab + bc + ca
b) Cho x + y = 1. Tính giá trị của biểu thức B = x3 + 3xy + y3
c) Cho x + y = a; x2 + y= b, x+ y= c. Tính giá trị của biểu thức N = a3 - 3ab + 2c
d) Cho x + y = a, x - y = b. Tính giá trị của biểu thức D = x- ytheo a và b
e) Cho x + y = a, x+ y= b. Tính giá trị của biểu thức E = x3 + ytheo a và b
f) Cho x + y = 1, xy= -1. Tính giá trị của các biểu thức x+ y2 , x+ y3 , (x2 - y2)2 , x+ y6
g) Cho x - y = 2, xy = 1. Tính giá trị của các biểu thức x+ y2, x3 - y3, (x2- y2)2, x- y6
h) Cho a + b + c = 0, a2+ b+ c= 1. Tính giá trị của biểu thức H = a+ b+ c4
i) Cho a + b = a+ b=1. Chứng minh: a+ b= a4+ b4
j) Cho x + y = a + b; x+ y= a+ b2. CMR: x2000+ y2000 = a2000+ b2000
k) Cho a+ b= 1; c+ d= 1; ac + bd = 0. CMR: ab + cd = 0 
 

3
21 tháng 10 2018

1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)

\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)

26 tháng 9 2020

a,\(a+b+c=9\)

\(\Rightarrow\left(a+b+c\right)^2=81\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=81\)

Vì \(a^2+b^2+c^2=141\)

\(\Rightarrow2ab+2bc+2ca=-60\)

\(\Rightarrow2\left(ab+bc+ca\right)=-60\)

\(\Rightarrow ab+bc+ca=-30\)

Vậy ...