\(\dfrac{x+1}{2013}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

Vì you ghi sai phương trình nên tui sửa lại đề nghen!!!

Ta có \(\dfrac{x+1}{2013}+\dfrac{x+2}{2012}=\dfrac{x+3}{2011}+\dfrac{x+4}{2010}\)

\(\Leftrightarrow\dfrac{x+1}{2013}+1+\dfrac{x+2}{2012}+1=\dfrac{x+3}{2011}+1+\dfrac{x+4}{2010}+1\)

\(\Leftrightarrow\dfrac{x+2014}{2013}+\dfrac{x+2014}{2012}=\dfrac{x+2014}{2011}+\dfrac{x+2014}{2010}\)

\(\Leftrightarrow\dfrac{x+2014}{2013}+\dfrac{x+2014}{2012}-\dfrac{x+2014}{2011}-\dfrac{x+2014}{2010}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}-\dfrac{1}{2011}-\dfrac{1}{2010}\right)=0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

Vậy \(x=-2014\)

2 tháng 3 2019

vế phải = bn z bạn

15 tháng 5 2018

\(\dfrac{x+3}{2011}+\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\ge\dfrac{3x}{2014}\)

\(\dfrac{x+3}{2011}+1+\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\ge\dfrac{3x}{2014}+3\)

\(\dfrac{x+2014}{2011}+\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\ge3\left(\dfrac{x+2014}{2014}\right)\)

\(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)\ge0\)

\(\left(\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{3}{2014}\right)>0\) (bạn có thể chứng minh nếu thích )

Nên \(x+2014\ge0\)

\(\Leftrightarrow x\ge-2014\)

Vậy

có 1 lỗi nhỏ

23 tháng 12 2018

\(a.\dfrac{3x-2}{5}+\dfrac{x-1}{9}=\dfrac{14x-3}{15}-\dfrac{2x+1}{9}\\ \Leftrightarrow\dfrac{27x-18}{45}+\dfrac{5x-5}{45}=\dfrac{42x-9}{45}-\dfrac{10x+5}{45}\\ \Rightarrow27x-18+5x-5=42x-9-10x-5\\ \Leftrightarrow32x-23=32x-14\\ \Leftrightarrow0x=9\\ \Rightarrow Phươngtrìnhvônghiệm\\ \Rightarrow S=\phi\)

\(b.\dfrac{x+3}{2}-\dfrac{2-x}{3}-1=\dfrac{x+5}{6}\\ \Leftrightarrow\dfrac{3x-9}{6}-\dfrac{4-2x}{6}-\dfrac{6}{6}=\dfrac{x+5}{6}\\ \Rightarrow3x-9-4+2x-6=x+5\\ \Leftrightarrow5x-19=x+5\\ \Leftrightarrow4x=24\\ \Rightarrow x=6\\ \Rightarrow S=\left\{6\right\}\)

4 tháng 1 2019

\(c.\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\\ \Leftrightarrow\dfrac{x+5}{2010}+1+\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1+\dfrac{x+2}{2013}+1=-4+4\\ \Rightarrow\dfrac{2015+x}{2010}+\dfrac{2015+x}{2011}+\dfrac{2015+x}{2012}+\dfrac{2015+x}{2013}=0\\ \Leftrightarrow\left(2015+x\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)

Do \(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}>0\)

nên \(2015+x=0\Rightarrow x=-2015\)

Câu d tương tự...thêm rồi chuyển vế sang :v

5 tháng 4 2018

đề sai?

22 tháng 2 2019

1, \(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\\ \\ < =>\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\\ \\ < =>\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\\ \\ < =>\left(x-2014\right).\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \\ < =>x-2014=0< =>x=2014\)

2, \(x^2+1=x\\ \\ < =>x^2-x+1=0\\ \\ < =>x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\\ \\ < =>\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

có vế trái luôn dương, vế phải = 0 => vô nghiệm

23 tháng 12 2018

a) \(\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\)

\(\Rightarrow\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}+4=0\)

\(\Rightarrow\left(\dfrac{x+5}{2010}+1\right)+\left(\dfrac{x+4}{2011}+1\right)+\left(\dfrac{x+3}{2012}+1\right)+\left(\dfrac{x+2}{2013}+1\right)=0\)

\(\Rightarrow\left(\dfrac{x+5}{2010}+\dfrac{2010}{2010}\right)+\left(\dfrac{x+4}{2011}+\dfrac{2011}{2011}\right)+\left(\dfrac{x+3}{2012}+\dfrac{2012}{2012}\right)+\left(\dfrac{x+2}{2013}+\dfrac{2013}{2013}\right)=0\)

\(\Rightarrow\dfrac{x+5+2010}{2010}+\dfrac{x+4+2011}{2011}+\dfrac{x+3+2012}{2012}+\dfrac{x+2+2013}{2013}=0\)

\(\Rightarrow\dfrac{x+2015}{2010}+\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}+\dfrac{x+2015}{2013}=0\)

\(\Rightarrow\left(x+2015\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)=0\)

\(\dfrac{1}{2010}+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\ne0\)

\(\Rightarrow x+2015=0\)

\(\Rightarrow x=-2015\)

b) \(\dfrac{x-22}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)

\(\Rightarrow\dfrac{x-22}{77}+\dfrac{x-11}{78}-2=\dfrac{x-74}{15}+\dfrac{x-73}{16}-2\)

\(\Rightarrow\left(\dfrac{x-22}{77}-1\right)+\left(\dfrac{x-11}{78}-1\right)=\left(\dfrac{x-74}{15}-1\right)+\left(\dfrac{x-73}{16}-1\right)\)

\(\Rightarrow\left(\dfrac{x-22}{77}-\dfrac{77}{77}\right)+\left(\dfrac{x-11}{78}-\dfrac{78}{78}\right)=\left(\dfrac{x-74}{15}-\dfrac{15}{15}\right)+\left(\dfrac{x-73}{16}-\dfrac{16}{16}\right)\)

\(\Rightarrow\dfrac{x-22-77}{77}+\dfrac{x-11-78}{78}=\dfrac{x-74-15}{15}+\dfrac{x-73-16}{16}\)

\(\Rightarrow\dfrac{x-99}{77}+\dfrac{x-99}{78}=\dfrac{x-99}{15}+\dfrac{x-99}{16}\)

\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{77}+\dfrac{1}{78}\right)=\left(x-99\right)\left(\dfrac{1}{15}+\dfrac{1}{16}\right)\)

\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{77}+\dfrac{1}{78}\right)-\left(x-99\right)\left(\dfrac{1}{15}+\dfrac{1}{16}\right)=0\)

\(\Rightarrow\left(x-99\right)\left(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\right)=0\)

\(\dfrac{1}{77}+\dfrac{1}{78}-\dfrac{1}{15}-\dfrac{1}{16}\ne0\)

\(\Rightarrow x-99=0\)

\(\Rightarrow x=99\)

6 tháng 3 2017

Bài của bạn nè bạn gái!

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)

\(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)

\(\Rightarrow x-2014=0\Rightarrow x=2014\)

vậy x=2014

6 tháng 3 2017

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)

\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

Vậy PT có nghiệm là \(x=2014\)

NV
21 tháng 2 2019

a/ Đặt \(x^2+x+1=a\Rightarrow x^2+x+2=a+1\)

Pt trở thành \(a\left(a+1\right)-12=0\Leftrightarrow a^2+a-12=0\)

\(\Leftrightarrow a^2-3a+4a-12=0\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=3\\x^2+x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

2/ \(\dfrac{x+1}{2014}+1+\dfrac{x+2}{2013}+1=\dfrac{x+3}{2012}+1+\dfrac{x+4}{2011}+1\)

\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}=\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}\)

\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)

\(\Leftrightarrow x+2015=0\) (do \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))

\(\Rightarrow x=-2015\)

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Ta có:

\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)

Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)

\(\Leftrightarrow x=2013\)

Vậy PT có nghiệm \(x=2013\)

2 tháng 2 2019

\(\dfrac{2-x}{2010}-1=\dfrac{1-x}{2011}-\dfrac{x}{2012}\\ \Leftrightarrow\dfrac{2-x-2010}{2010}=\dfrac{2012-2012x-2011x}{2011\cdot2012}\\ \Leftrightarrow\dfrac{-2008-x}{2010}=\dfrac{2012-4023x}{4046132}\\ \Leftrightarrow\left(-2008-x\right)4046132=\left(2012-4023x\right)2010\\ \Leftrightarrow-8124633056-4046132x=4044120-8086230x\\ \Leftrightarrow-4046132x+8086230x=4044120+8124633056\\ \Leftrightarrow4040098x=8128677176\\ \Leftrightarrow x=2012\)

3 tháng 2 2019

\(\dfrac{2-x}{2010}-1=\dfrac{1-x}{2011}-\dfrac{x}{2012}\\ \Leftrightarrow2023066\left(2-x\right)-4066362660=2022060\left(1-x\right)-2021055x\\ \Leftrightarrow4046132-2023066x-4066362660=2022060-2022060x-2021055x\\ \Leftrightarrow-4062316528-2023066x=2022060-4043115x\\ \Leftrightarrow-2023066x+4043115x=2022060+4062316528\\ \Leftrightarrow2020049x=4064338588\\ \Leftrightarrow x=2012\)