K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: BC=BH+CH

=>BC=3,6+6,4=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HA^2=HB\cdot HC=3,6\cdot6,4=23,04=4,8^2\)

=>HA=4,8(cm)

ΔHAC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AC^2=4,8^2+6,4^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)

nên \(\hat{B}\) ≃53 độ

ΔABC vuông tại A

=>\(\hat{ABC}+\hat{ACB}=90^0\)

=>\(\hat{ACB}=90^0-53^0=37^0\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\) (4)

Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>\(HA^2=HM^2+HN^2\) (3)

Xét ΔHAB vuông tại H có HM là đường cao

nên \(HM^2=MA\cdot MB\) (5)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(HN^2=NA\cdot NC\left(6\right)\)

Từ (3),(4),(5),(6) suy ra \(HB\cdot HC=MA\cdot MB+NA\cdot NC\)

c: Ta có: AK⊥MN

=>\(\hat{KAC}+\hat{ANM}=90^0\)

\(\hat{ANM}=\hat{AHM}\) (AMHN là hình chữ nhật)

\(\hat{AHM}=\hat{B}\left(=90^0-\hat{HAB}\right)\)

nên \(\hat{KAC}+\hat{B}=90^0\)

\(\hat{KCA}+\hat{B}=90^0\)

nên \(\hat{KAC}=\hat{KCA}\)

=>KA=KC

Ta có: \(\hat{KAC}+\hat{KAB}=\hat{BAC}=90^0\)

\(\hat{KCA}+\hat{KBA}=90^0\) (ΔABC vuông tại A)

\(\hat{KAC}=\hat{KCA}\)

nên \(\hat{KAB}=\hat{KBA}\)

=>KA=KB

mà KA=KC

nên KB=KC

=>K là trung điểm của BC

16 tháng 8

Giải giùm mình nhé

16 tháng 8

a) Rút gọn A rồi tìm \(x\) để \(A\) đạt GTNN

Nhận xét:

\(x^{2} - 8 x + 16 = \left(\right. x - 4 \left.\right)^{2} \Rightarrow \sqrt{x^{2} - 8 x + 16} = \mid x - 4 \mid = x - 4 \left(\right. v \overset{ˋ}{\imath} x > 4 \left.\right)\)

Xét biểu thức trong ngoặc:

\(\sqrt{x + 4 \sqrt{x - 4}} = \sqrt{\left(\right. \sqrt{x - 4} + 2 \left.\right)^{2}} , \sqrt{x - 4 \sqrt{x - 4}} = \sqrt{\left(\right. \sqrt{x - 4} - 2 \left.\right)^{2}}\)

⇒ Với \(x > 4\), ta có:

\(\sqrt{x + 4 \sqrt{x - 4}} = \sqrt{x - 4} + 2 , \sqrt{x - 4 \sqrt{x - 4}} = \mid \sqrt{x - 4} - 2 \mid = \sqrt{x - 4} - 2 \left(\right. v \overset{ˋ}{\imath} \sqrt{x - 4} > 2 \left.\right)\)

⇒ Tổng:

\(\sqrt{x + 4 \sqrt{x - 4}} + \sqrt{x - 4 \sqrt{x - 4}} = \left(\right. \sqrt{x - 4} + 2 \left.\right) + \left(\right. \sqrt{x - 4} - 2 \left.\right) = 2 \sqrt{x - 4}\)

Do đó:

\(A = \frac{x \cdot 2 \sqrt{x - 4}}{x - 4} = \frac{2 x \sqrt{x - 4}}{x - 4} = \frac{2 x}{\sqrt{x - 4}}\)

Xét hàm \(A \left(\right. x \left.\right) = \frac{2 x}{\sqrt{x - 4}} , \&\text{nbsp}; x > 4\)

Đặt \(t = \sqrt{x - 4} > 0 \Rightarrow x = t^{2} + 4\)

\(A = \frac{2 \left(\right. t^{2} + 4 \left.\right)}{t} = 2 t + \frac{8}{t}\)

Tìm GTNN của hàm \(f \left(\right. t \left.\right) = 2 t + \frac{8}{t} , \&\text{nbsp}; t > 0\)

Áp dụng BĐT AM-GM:

\(2 t + \frac{8}{t} \geq 2 \sqrt{2 t \cdot \frac{8}{t}} = 2 \sqrt{16} = 8\)

Dấu “=” xảy ra khi \(2t=\frac{8}{t}\Rightarrow t^2=4\Rightarrow t=2\Rightarrow x=t^2+4=8\)

10 tháng 8

giúp mình từ câu 9 với


Bài 3:

a: ΔOBC cân tại O

mà OI là đường cao

nên I là trung điểm của BC

Xét ΔBOD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBOD cân tại B

=>BO=BD

ma BO=OD

nên BO=BD=OD

=>ΔBOD đều

=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>\(\hat{BAD}+\hat{BDA}=90^0\)

=>\(\hat{BAD}=90^0-60^0=30^0\)

Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

=>AB=AC

ΔAIB=ΔAIC

=>\(\hat{IAB}=\hat{IAC}\)

=>AI là phân giác của góc BAC

=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)

Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)

nên ΔABC đều

b: ΔOBD đều

=>BD=OB=R

ΔABD vuông tại B

=>\(BA^2+BD^2=AD^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt3\)

=>\(BA=AC=BC=R\sqrt3\)


Câu 5:

AB=1,6+25=26,6(m)

Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)

\(\hat{xAC}=38^0\)

nên \(\hat{ACB}=38^0\)

Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)

=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)

=>Chiếc xe cách chân tòa nhà khoảng 34m


Câu 7:

Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)

nênAHBD là hình chữ nhật

=>HB=AD=68(m)

Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)

=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)

Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)

=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)

BC=BH+CH=68+119,26≃187,3(m)


a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)