Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, 2009; 0
b, x= 0.5 ; y= 0.4; z=0.9
sai thì thôi nhé

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)
=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)
\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)
=>\(\frac12\left(x+y+z\right)=\frac12\)
=>x+y+z=1
*Ta có: x+y+z=1
=>z+2z-2=1
=>3z-2=1
=>3z=3
=>z=1
*Ta có: x+y+z=1
=>y+2y-3=1
=>3y=4
=>\(y=\frac43\)
*Ta có: x+y+z=1
=>x+2x+5=1
=>3x+5=1
=>3x=-4
=>\(x=-\frac43\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)
=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)
\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)
=>\(\frac12\left(x+y+z\right)=\frac12\)
=>x+y+z=1
*Ta có: x+y+z=1
=>z+2z-2=1
=>3z-2=1
=>3z=3
=>z=1
*Ta có: x+y+z=1
=>y+2y-3=1
=>3y=4
=>\(y=\frac43\)
*Ta có: x+y+z=1
=>x+2x+5=1
=>3x+5=1
=>3x=-4
=>\(x=-\frac43\)

C/ Số số hạng của dãy trên là:
(x - 1) + 1 = x (số hạng)
Tổng dãy trên là: x.(x + 1) / 2 = 55
=> x.(x + 1) = 55 x 2
=> x .(x + 1) = 110
=> x .(x + 1) = 10.11
=> x = 10
c) (x+1).x:2=55
(x+1).x=110
Tích của 2 số liên tiếp bằng 110
=>x=10

3x+8 chia hết cho x-1.
3x+8=3x-3+11
3.(x-1)+11
x-1 chia hết cho x-1.
=>3.(x-1) chia hết cho x01.
=>11 chia hết cho x-1.
Lập bảng các ước ra mà làm.
3x+8 chia hết cho x-1.
3x+8=3x-3+11
3.(x-1)+11
x-1 chia hết cho x-1.
=>3.(x-1) chia hết cho x01.
=>11 chia hết cho x-1.
Lập bảng các ước ra mà làm.

\(C=\frac{3x+8}{x-1}=\frac{3x-3+11}{x-1}=\frac{3.\left(x-1\right)+8}{x-1}=\frac{3.\left(x-1\right)}{x-1}+\frac{8}{x-1}=3+\frac{8}{x-1}\)
Để C nguyên thì \(\frac{8}{x-1}\)nguyên
=> 8 chia hết cho x - 1
=> \(x-1\inƯ\left(8\right)\)
=> \(x-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
=> \(x\in\left\{2;0;3;-1;5;-4;9;-7\right\}\)
\(C=\frac{3x+8}{x-1}=\frac{3x-3+11}{x-1}=\frac{3\left(x-1\right)+11}{x-1}=3-\frac{11}{x-1}\)
Để C có giá trị nguyên <=>11 chia hết cho (x-1).
mà x thuộc Z => (x-1) thuộc Z.
Do đó \(\left(x-1\right)\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Sau đó bạn tự tìm x.
\(\left(x+1\right).\left(x-2\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\left(loại\right)\)
Hoặc:
\(\Rightarrow\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\left(nhận\right)\)
\(\Rightarrow-1< x< 2.\)
\(\Rightarrow x\in\left\{0;1\right\}.\)
Vậy \(x\in\left\{0;1\right\}\) thì \(\left(x+1\right).\left(x-2\right)< 0.\)
Chúc bạn học tốt!
(x+1).(x-2) < 0
\(\Rightarrow\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.hoặc\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.hoặc\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1< x< 2\left(chọn\right)\\2< x< -1\left(loại\right)\end{matrix}\right.\)
Vậy -1<x<2