K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

Ta có:  x - 1 3  + 2x =  x 3 –  x 2 – 2x +1

⇔ x 3  – 3 x 2 + 3x  - 1 + 2x = x 3  –  x 2  - 2x + 1

⇔ 2 x 2  – 7x +2 =0

∆  = - 7 2  -4.2.2 = 49 - 16 = 33 > 0

∆ = 33

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 5 2020

x-1 + x-3 =1 <=> 2x -4=1 tu giai not

a,    tìm trong nâng cao phát triển tập 2

b,

ta thấy VT là 1 tam thức bậc 2 nên ta đặt \(\sqrt{\frac{x+3}{2}}=ay+b\)

<=>x+3=2a2y2+4aby+2b2

<=>ax+3a=2a3y2+4a2by+2ab2

<=>ax+3a-2ab2=2a3y2+4a2by

\(\Leftrightarrow\hept{\begin{cases}2x^2+4x=ay+b\\2a^3y^2+4a^2by=ax+3a-2ab^2\end{cases}}\)

đưa hệ này về hệ đối xứng thì ta có:\(\hept{\begin{cases}a^3=1\\a^2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}}\)

\(\Rightarrow\sqrt{2x-1}=y+1\)

sau đó đưa về hệ đối xứng là được

24 tháng 7 2017

Trên tia đối tia CB lấy F sao cho AM = 2CF

\(\Delta DCF\approx\Delta DAM\left(c-g-c\right)\)

\(\Rightarrow DM=2DF\)   và  \(\widehat{ADM}=\widehat{CDF}\)  nên  \(\widehat{MDF}=90^0\)  hay  \(\Rightarrow\widehat{EDF}+\widehat{MDE}=90^0\)  (1)

Lại có \(\widehat{DEC}+\widehat{EDC}=90^0\)  \(\Rightarrow\widehat{DEC}+\widehat{MDE}=90^0\)    (2)

(1), (2) => \(\widehat{EDF}=\widehat{DEC}\)  nên DF = EF

Lại có  \(DM=2DF=2EF=2CF+2EC=AM+2EC\)

Done!

21 tháng 6 2019

Pt a: Đk \(1< x\le6\)
\(\frac{\sqrt{6-x}-2x+3}{\sqrt{x-1}}=\sqrt{x-1}\Rightarrow\sqrt{6-x}-2x+3=x-1\)
\(\Leftrightarrow\sqrt{6-x}=3x-4\Rightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow6-x=9x^2-24x+16\Leftrightarrow9x^2-23x+10=0\)
\(\Leftrightarrow9x^2-18x-5x+10=0\Leftrightarrow9x\left(x-2\right)-5\left(x-2\right)=0\Leftrightarrow\left(9x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{9}\left(Lọai\right)\\x=2\left(Thoả\right)\end{cases}}\)
Vậy \(S=\left\{2\right\}\)
Pt b :
Đk: \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\left(x+1\right)\sqrt{x^2-4}=2x+2\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-4}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\sqrt{x^2-4}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Lọai\right)\\\sqrt{x^2-4}=2\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4}=2\Rightarrow x^2-4=4\Leftrightarrow x^2=8\Leftrightarrow x=2\sqrt{2}\left(Thoả\right)\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)

2 tháng 7 2019

\(4,\sqrt{x}+2=x+2,\)

\(\Rightarrow\sqrt{x}+2-x-2=0\)

\(\Rightarrow x-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=1\end{cases}}}\)

\(\Rightarrow x\in\left\{0;1\right\}\)

4 tháng 10 2016

Mình hướng dẫn nhé :)

  • Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)

Xét trường hợp để tìm nghiệm nhé :)

  • \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
  • \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
  • \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
  • \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.