Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài

a, \(4x\left(x-3\right)-3x\left(2+x\right)=4x^2-12x-6x^2-3x^2=-5x^2-12x\)
b, \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)=10x^2+4x+6x^2-11x+3\)
\(=16x^2-7x+3\)
c, \(\left(x-1\right)^2-\left(x+2\right)\left(x-2\right)=x^2-2x+1-x^2+4=-2x+5\)
d, \(\left(1+2x\right)+2\left(1+2x\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=1+2x+2\left(x-1+2x^2-2x\right)+x^2-2x+1\)
\(=x^2+2+2\left(-x-1+2x^2\right)=x^2+2-2x-2+4x^2=5x^2-2x\)

2x3 + 3x2 + 6x + 5 = 02
<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0
<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0
<=> (2x2 + x + 5)(x + 1) = 0
<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)
<=> x = - 1
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0
<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0
<=> (2x + 5)(2x3 + x2 - 3) = 0
<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0
<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0
<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0
Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)
\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)
Vậy ...

Evaluate the expression at
x3 + 12x + 48x + 64
= (x + 4)2
= (- 4 + 4)2
= 02
= 0
Fill in the blank: ............
x3 - a = (x - 2)(x2 + 2x + 4)
x3 - a = x3 - 8
a = 8
Evaluate
Answer:
a + b = 8
(a + b)2 = 82
a2 + b2 + 2ab = 64
a2 + b2 + 2 . 10 = 64
a2 + b2 + 20 = 64
a2 + b2 = 64 - 20
a2 + b2 = 44
(a - b)2
= a2 - 2ab + b2
= 44 - 2 . 10
= 44 - 20
= 24
Given .
Evaluate A at .
Answer: A
A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2
= x3 - 125 - x3 - 3x2 + 3x2
= - 125
Given .
Evaluate A at .
Answer: A
Answer:
Given
Answer:

a) ta có :x2+2x+2=(x+1)2+1>0,với mọi x
x2+2x+3=(x+1)2+2>0,với mọi x
ĐKXĐ:x\(\in\)R.Đặt x2+2x+2=a (a>0),ta có:\(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)
<=>\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}+\dfrac{6a^2}{6a\left(a+1\right)}=\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)
=>6(a2-1)+6a2=7a2+7a<=>6a2-6+6a2=7a2+7a<=>12a2-7a2-7a-6=0
<=>5a2-7a-6=0<=>(a-2)(5a+3)=0<=>a-2=0(vì a>0,nên 5a+3>0)
<=>a=2=>x2+2x+2=2<=>x(x+2)=0<=>\(|^{x=0}_{x+2=0< =>x=-2}\)
Vậy tặp nghiệm của PT là S\(=\left\{0;-2\right\}\)

b. \(\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}=0\)\(\Leftrightarrow\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}-20=0\)\(\Leftrightarrow\dfrac{x+106}{3}-2+\dfrac{x+116}{4}-4+\dfrac{x+130}{5}-6+\dfrac{x+148}{6}-8=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\ne0\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy PT có nghiệm \(x=-100\)
\(x^4+x^3+2x^2+x+1=0\\ \Leftrightarrow\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\\ \)
Vì x^2+x+1\(>0\) với mọi x và x^2+1\(>0\) với mọi x nên (x^2+x+1)(x^2+1)>0 với mọi x
Vậy phương trình vô nghiệm

\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)
\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)
\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)
\(=\frac{x}{x-1}\)
a, \(\frac{x-2}{3}-\frac{2x-3}{4}=x-1\)
\(\Leftrightarrow\frac{4x-8}{12}-\frac{6x-9}{12}=\frac{12x-12}{12}\)
Khử mẫu : \(\Rightarrow4x-8-6x+9=12x-12\)
\(\Leftrightarrow-2x+1=12x-12\Leftrightarrow-14x=-13\Leftrightarrow x=\frac{13}{14}\)
c, \(\frac{x-5x}{6}+\frac{1}{3}=2-x\)
\(\Leftrightarrow\frac{x-5x}{6}+\frac{2}{6}=\frac{12-6x}{6}\)
Khử mẫu : \(\Rightarrow x-5x+2=12-6x\)
\(\Leftrightarrow-6x+6x=12-2\Leftrightarrow0\ne10\)
Vậy phương trình vô nghiệm