Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x+y=\sqrt{2}-1\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)\left(\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\right)=2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right).1\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm {1;-2}
b)
\(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}\left(\sqrt{3}x-1\right)=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}.\left(\frac{3\sqrt{3}+2\sqrt{2}}{19}\right)-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-10+2\sqrt{6}}{19}\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\\y=\frac{-10+2\sqrt{6}}{19}\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm \(\left\{\frac{3\sqrt{3}+2\sqrt{2}}{19};\frac{-10+2\sqrt{6}}{19}\right\}\)
c)
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=10\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=13\\4x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\4.\frac{13}{7}+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\y=\frac{9}{7}\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm \(\left\{\frac{13}{7};\frac{9}{7}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=18\left(1\right)\\10x-6y=10\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) => 7x=28
\(\Leftrightarrow\) x=4
thay x vào (1) ta có -4+2y=6
=> 2y=10
=>y=5
Vậy nghiệm của phương trình (x;y)=(4;5)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y=2\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\5y=15\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. ĐK: \(x\ge1;y\ge1\)
Đặt \(\sqrt{x-1}=a\left(a\ge0\right)\) và \(\sqrt{y-1}=b\left(b\ge0\right)\)
Khí đó hệ phương trình trở thành:
\(\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a-1\\a+2a-1=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=2.1-1\\a=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)(tm)
* a = 1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)(tmđk)
* b = 1 \(\sqrt{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\) (tmđk)
Vậy nghiệm của hệ phương trình là (2;2)
b. Đặt \(\left(x-1\right)^2=a\) ( a \(\ge\) 0)
Khi đó hệ phương trình đã cho trở thành :
\(\left\{{}\begin{matrix}a-2y=2\\3a+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2+2y\\3\left(2+2y\right)+3y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2+2.\left(-\dfrac{5}{9}\right)\\y=-\dfrac{5}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{8}{9}\\y=-\dfrac{5}{9}\end{matrix}\right.\)(tmđk)
* a = \(\dfrac{8}{9}\Leftrightarrow\) \(\left(x-1\right)^2=\dfrac{8}{9}=\left(\pm\dfrac{2\sqrt{2}}{3}\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\sqrt{2}}{3}+1\\x=-\dfrac{2\sqrt{2}}{3}+1\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình là \(\left(\dfrac{2\sqrt{2}}{3};-\dfrac{5}{9}\right);\left(\dfrac{-2\sqrt{2}}{3};-\dfrac{5}{9}\right)\)
a)
⇔ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20-2x%20+%203%5Csqrt%7B2%7D.y%20%3D%20-%5Csqrt%7B2%7D%26%20%26%20%5C%5C%202x%20+%20y%5Csqrt%7B2%7D%20%3D%20-2%26%20%26%20%5Cend%7Bmatrix%7D%5Cright.)
⇔
⇔
⇔ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x%20%3D%20-%5Cfrac%7B3%7D%7B4%7D%20+%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B8%7D%26%20%26%20%5C%5C%20y%20%3D%20-%5Cfrac%7B1%7D%7B4%7D%20-%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B4%7D%26%20%26%20%5Cend%7Bmatrix%7D%5Cright.)
b) Nhân phương trình thứ nhất với √2 rồi cộng từng vế hai phương trình ta được:
5x√6 + x√6 = 6 ⇔ x =![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B1%7D%7B%5Csqrt%7B6%7D%7D)
Từ đó hệ đã cho tương đương với
⇔ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B6%7D%7D%20%26%20%26%20%5C%5C%20y%20%3D%20-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%26%20%26%20%5Cend%7Bmatrix%7D%5Cright.)
Bài giải:
a)
⇔ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20-2x%20+%203%5Csqrt%7B2%7D.y%20%3D%20-%5Csqrt%7B2%7D%26%20%26%20%5C%5C%202x%20+%20y%5Csqrt%7B2%7D%20%3D%20-2%26%20%26%20%5Cend%7Bmatrix%7D%5Cright.)
⇔
⇔
⇔ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x%20%3D%20-%5Cfrac%7B3%7D%7B4%7D%20+%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B8%7D%26%20%26%20%5C%5C%20y%20%3D%20-%5Cfrac%7B1%7D%7B4%7D%20-%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B4%7D%26%20%26%20%5Cend%7Bmatrix%7D%5Cright.)
b) Nhân phương trình thứ nhất với √2 rồi cộng từng vế hai phương trình ta được:
5x√6 + x√6 = 6 ⇔ x =![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B1%7D%7B%5Csqrt%7B6%7D%7D)
Từ đó hệ đã cho tương đương với
⇔ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B6%7D%7D%20%26%20%26%20%5C%5C%20y%20%3D%20-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%26%20%26%20%5Cend%7Bmatrix%7D%5Cright.)