
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)^3=x\)
\(\Leftrightarrow2x-1+x-1+3\left(\sqrt[3]{2x-1}\right)^2\sqrt[3]{x-1}+3\sqrt[3]{2x-1}.\left(\sqrt[3]{x-1}\right)^2=x\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\left(\sqrt[3]{2x-1}+\sqrt[3]{x-1}\right)=2-2x\)
\(\Leftrightarrow3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\sqrt[3]{x}=2-2x\)
\(\Leftrightarrow\left(3\sqrt[3]{2x-1}\sqrt[3]{x-1}.\sqrt[3]{x}\right)^3=\left(2-2x\right)^3\)
\(\Leftrightarrow27x\left(x-1\right)\left(2x-1\right)=8\left(1-x\right)^3\)
\(\Leftrightarrow27x\left(x-1\right)\left(2x-1\right)+8\left(x-1\right)^3=0\)
\(\Leftrightarrow\left(x-1\right)\left(27x\left(2x-1\right)+8\left(x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(54x-27+8\left(x^2-2x+1\right)\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(54x-27+8x^2-16x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x^2+38x-19\right)=0\)
tới đây tìm đc x

Chắc là bạn ghi ko đúng đề, nghiệm của BPT này dài khoảng 2 trang giấy

theo vi-ec ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1.x_2=\dfrac{c}{a}=-15\end{matrix}\right.\)
\(Q=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}=\sqrt{2^2-4.\left(-15\right)}=8\)

\(\sqrt{x^2+6x+9}=\left|2x-1\right|\Leftrightarrow\sqrt{\left(x+3\right)^2}=\left|2x-1\right|\)
\(\Leftrightarrow\left|x+3\right|=\left|2x-1\right|\Leftrightarrow\left(\left|x+3\right|\right)^2=\left(\left|2x-1\right|\right)^2\)
\(\Leftrightarrow\left(x+3\right)^2=\left(2x-1\right)^2\Leftrightarrow x^2+6x+9=4x^2-4x+1\)
\(\Leftrightarrow x^2+6x+9-4x^2+4x-1=0\Leftrightarrow-3x^2+10x+8=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
thử lại ta thấy cả 2 nghiệm đều thỏa mãn phương trình đầu
vậy \(4;-\dfrac{2}{3}\) đều là nghiệm của phương trình đầu
vậy \(x=4;x=-\dfrac{2}{3}\)

a) Ta có: \(f\left(x\right)=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)
Lập bảng xét dấu
Vậy để \(f\left(x\right)>0\) \(\Leftrightarrow x\in\left(-2;0\right)\cup\left(1;+\infty\right)\)
b) Ta có: \(\left(3x^2+7x-6\right)\left(5x+8\right)^2\le0\)
\(\Leftrightarrow3x^2+7x-6\le0\) \(\Leftrightarrow-3\le x\le\dfrac{2}{3}\)
Vậy \(x\in\left[-3;\dfrac{2}{3}\right]\)
= máy tính
sai