![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2 : cho ab=cd(a,b,c,d≠0)ab=cd(a,b,c,d≠0) và đôi 1 khác nhau, khác đôi nhau
Chứng minh :
a) C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)
\(\frac{a-b}{a+b}=\frac{kb-b}{kb+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)
\(\frac{c-d}{c+d}=\frac{kd-d}{kd+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}\frac{k-1}{k+1}\)
Bài 1:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
Do đó: x=60; y=45; z=40
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
Do đó: x=20; y=30; z=42
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)
Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).
b)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).
![](https://rs.olm.vn/images/avt/0.png?1311)
giống câu này thôi : https://hoc24.vn/hoi-dap/question/649217.html
S A B C D E F I K M
a/
Trong mp(SAC) Gọi K là giao của EF và AC
\(K\in EF\)
\(K\in AC;AC\in\left(ABC\right)\Rightarrow K\in\left(ABC\right)\)
=> K là giao của EF với (ABC)
b/
Trong mp (SBC), Gọi M là giao của SI với BF
\(M\in SI;SI\in\left(SAI\right)\Rightarrow M\in\left(SAI\right)\)
\(M\in BF;BF\in\left(ABF\right)\Rightarrow M\in\left(ABF\right)\)
\(A\in\left(SAI\right);A\in\left(ABF\right)\)
=> AM là giao tuyến giữa (SAI) và (ABF)
c/
\(I\in\left(SAI\right)\)
\(I\in BC;BC\in\left(BCE\right)\Rightarrow I\in\left(BCE\right)\)
\(E\in SA;SA\in\left(SAI\right)\Rightarrow E\in\left(SAI\right)\)
\(E\in\left(BCE\right)\)
=> IE là giao tuyến giữa (SAI) và (BCE)