\(97\dfrac{2}{3}-125\dfrac{3}{5}+97\dfrac{2}{5}-125\dfrac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left|97\dfrac{2}{3}-123\dfrac{3}{5}+97\dfrac{2}{5}-125\dfrac{1}{3}\right|\)

\(=\left|97\left(\dfrac{2}{3}+\dfrac{2}{5}\right)-125\cdot\left(\dfrac{3}{5}+\dfrac{1}{3}\right)\right|\)

\(=\left|194\cdot\dfrac{8}{15}-125\cdot\dfrac{14}{15}\right|\)

\(=\left|\dfrac{-66}{5}\right|=\dfrac{66}{5}\)

Ta có: \(\left|97\dfrac{2}{3}-125\dfrac{3}{5}\right|+97\dfrac{2}{5}-125\dfrac{1}{3}\)

\(=\left|97+\dfrac{2}{3}-125-\dfrac{3}{5}\right|+97+\dfrac{2}{5}-125-\dfrac{1}{3}\)

\(=\left|-28+\dfrac{1}{15}\right|-28+\dfrac{1}{15}\)

\(=\left|\dfrac{1}{15}-28\right|-28+\dfrac{1}{15}\)

\(=28-\dfrac{1}{15}-28+\dfrac{1}{15}\)

\(=0\)

25 tháng 3 2024
Giải:

a) S = 1.2 + 2.3 + 3.4 + ... + 99.100

S có thể được viết lại thành:

S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)

= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98

= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)

Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:

S = n(n+1)(2n+1)/6

Với n = 99, ta có:

S = 99.100.199/6 = 331650

Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:

S = n(n+1)/2

Với n = 98, ta có:

S = 98.99/2 = 4851

Do đó, S = 331650 - 4851 = 326799

b) B = 4924.12517.28−530.749.45529.162.748

B có thể được viết lại thành:

B = (4924.12517.28) / (530.749.45529.162.748)

B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)

B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529

B = 108 / 45529

c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101

C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101

C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)

C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)

C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)

d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018

D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^

a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)

\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)

\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)

c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)

=1/4+3/4

=1

24 tháng 7 2017

a,

\(\dfrac{89}{-13}< 0< \dfrac{1}{123}\\ \Rightarrow\dfrac{89}{-13}< \dfrac{1}{123}\)

Vậy \(\dfrac{89}{-13}< \dfrac{1}{123}\)

b,

\(\dfrac{-13}{15}>\dfrac{-15}{15}=-1=\dfrac{-30}{30}>\dfrac{-31}{30}\)

Vậy \(\dfrac{-13}{15}>\dfrac{-31}{30}\)

c,

\(\dfrac{125}{123}=\dfrac{123}{123}+\dfrac{2}{123}=1+\dfrac{2}{123}\\ \dfrac{99}{97}=\dfrac{97}{97}+\dfrac{2}{97}=1+\dfrac{2}{97}\)

\(\dfrac{2}{97}>\dfrac{2}{123}\Rightarrow1+\dfrac{2}{97}>1+\dfrac{2}{123}\Leftrightarrow\dfrac{99}{97}>\dfrac{125}{123}\)

Vậy \(\dfrac{99}{97}>\dfrac{125}{123}\)

d,

\(\dfrac{125}{126}< \dfrac{126}{126}=1=\dfrac{986}{986}< \dfrac{987}{986}\)

Vậy \(\dfrac{125}{126}< \dfrac{987}{986}\)

b: \(\left|x-\dfrac{3}{5}\right|< \dfrac{1}{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{5}>-\dfrac{1}{3}\\x-\dfrac{3}{5}< \dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\dfrac{4}{15}< x< \dfrac{14}{15}\)

c: \(\left|x+\dfrac{11}{2}\right|>-5.5\)

mà \(\left|x+\dfrac{11}{2}\right|\ge0\forall x\)

nên \(x\in R\)

11 tháng 11 2018

a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)

= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)

= 0 + \(\dfrac{11}{125}\)

= \(\dfrac{11}{125}\)

b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +

\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4

= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4

= -1

c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)

= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)

= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)

= \(\dfrac{-7}{75}\)

d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)

= 1 + (-1)

= 0

26 tháng 11 2022

a: \(=\dfrac{-3}{4}\left(31+\dfrac{11}{23}+8+\dfrac{12}{23}\right)=\dfrac{-3}{4}\cdot40=-30\)

b: \(=\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)

\(=\dfrac{35}{6}:\dfrac{-175+132}{42}+\dfrac{15}{2}\)

\(=\dfrac{35}{6}\cdot\dfrac{42}{-43}+\dfrac{15}{2}\)

\(=\dfrac{35\cdot7}{-43}+\dfrac{15}{2}\)

\(=\dfrac{-70\cdot7+15\cdot43}{86}=\dfrac{155}{86}\)

c: \(=\dfrac{-7}{5}\left(4+\dfrac{5}{9}+5+\dfrac{4}{9}\right)=\dfrac{-7}{5}\cdot10=-14\)

d: \(=4+\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}\cdot\dfrac{64}{125}\cdot\dfrac{-8}{27}\right)\)

\(=\dfrac{89}{16}+25\cdot\dfrac{-32}{375}\)

\(=\dfrac{89}{16}-\dfrac{32}{15}=\dfrac{823}{240}\)

e: \(=\dfrac{2}{3}-4\cdot\left(\dfrac{2}{4}+\dfrac{3}{4}\right)=\dfrac{2}{3}-5=-\dfrac{13}{3}\)

22 tháng 8 2017

1.

\(\left(1-2x\right)^4=81\\ \Rightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy ...

2.

\(\left|2,5-x\right|=1,3\\ \Rightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)

Vậy ...

3.

\(5^x+5^{x+2}=650\\ 5^x\left(1+5^2\right)=650\\ 5^x\cdot26=650\\ 5^x=25\\ x=2\)

Vậy ...

4, 5 tự làm

22 tháng 8 2017

Cảm ơn bạn nhiều lắm haha