
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(=3+\frac{1}{x^2+2x+3}\)
Lại có: \(x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\)
\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x=-1
P2 tương tự

Ta có :
\(2B=\frac{6x^2+12x+20}{x^2+2x+3}=\frac{7x^2+14x+21-x^2-2x-1}{x^2+2x+3}=\frac{7\left(x^2+2x+3\right)-\left(x+1\right)^2}{x^2+2x+3}\)
\(=7-\frac{\left(x+1\right)^2}{x^2+2x+3}\le7\) (Vì \(\frac{\left(x+1\right)^2}{x^2+2x+3}\ge0\))
Do \(2B\le7\Rightarrow B\le\frac{7}{2}\)đạt GTLN là \(\frac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2+2x+3}=0\Rightarrow x=-1\)
Vậy GTLN của \(B\) là \(\frac{7}{2}\) tại \(x=-1\)

bài 1:
b, x2 - 6x +10=x2 - 2.x.3 +9 +1=(x - 3)2 +1
Vì (x-3)2 >= 0 với mọi x
=> (x-3)2 +1 >= 1 với mọi x
vậy GTNN của biểu thức bằng 1 <=> x-3=0<=> x=3

a,\(M=-2x^2+2x-3\)
\(\Rightarrow2M=-4x^2+4x-6=-\left(4x^2-4x+1\right)-5=-\left(2x-1\right)^2-5\)
Vì\(-\left(2x-1\right)^2\le0\Rightarrow2M=-\left(2x-1\right)^2-5\le-5\Rightarrow M\le-\frac{5}{2}\)
Dấu "=" xảy ra khi x=1/2
Vậy Mmax=-5/2 khi x=1/2
b, \(N=3x-x^2-4=-x^2+3x-4=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\)
Vì \(-\left(x-\frac{3}{2}\right)^2\le0\Rightarrow N=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Dấu "=" xảy ra khi x=3/2
Vậy Nmax=-7/4 khi x=3/2
c, \(P=\frac{3}{x^2-6x+10}=\frac{3}{x^2-6x+9+1}=\frac{3}{\left(x-3\right)^2+1}\)
Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1\Rightarrow\frac{1}{\left(x-3\right)^2+1}\le1\Rightarrow\frac{3}{\left(x-3\right)^2+1}\le3\)
Dấu "=" xảy ra khi x=3
Vậy Pmax=3 khi x=3

Ta có: \(A=\frac{3x^2+6x+11}{x^2+2x+3}=3+\frac{2}{x^2+2x+3}=3+\frac{2}{\left(x+1\right)^2+2}\)
Đặt \(B=\frac{2}{\left(x+1\right)^2+2}\),để A đạt giá trị lớn nhất thì B lớn nhất.
Mà B lớn nhất khi \(\left(x+1\right)^2+2\) bé nhất.
Lại có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\) (1)
Từ (1) suy ra: \(B\le\frac{2}{2}=1\Rightarrow A=3+B\le3+1=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy \(A_{max}=4\Leftrightarrow x=-1\)

Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^

a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1
\(P=\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3\left(x^2+2x+1\right)+6+1}{\left(x^2+2x+1\right)+2}=\frac{3\left[\left(x+1\right)^2+2\right]+1}{\left(x+1\right)^2+2}=3+\frac{1}{\left(x+1\right)^2+2}\)
Để \(3+\frac{1}{\left(x+1\right)^2+2}\) đạt GTLN <=> \(\left(x+1\right)^2+2\) Đạt GTNN
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\) có GTNN là 2 tại x = - 1
\(\Rightarrow B_{max}=3+\frac{1}{2}=\frac{7}{2}\) tại x = - 1