\(x^2\left(3-X\right)\) trên đoạn \...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 6 2020

\(f\left(x\right)=4.\frac{x}{2}.\frac{x}{2}\left(3-x\right)\le\frac{4}{27}\left(\frac{x}{2}+\frac{x}{2}+3-x\right)^3=4\)

\(f\left(x\right)_{max}=4\) khi \(\frac{x}{2}=3-x\Rightarrow x=2\)

15 tháng 8 2019

TA có: \(y=-x^4+4x^2-3\)

              \(=-\left(x^4-4x^2+4\right)+1\) 

               \(=-\left(x^2-1\right)^2+1\le1\)

Vì \(y\in\left[-2;3\right]\) 

=>..........................

Đến đây dễ rồi bạn tự làm nốt nhé

22 tháng 2 2022

đây nha undefined

11 tháng 1 2021

y = (x² - 1)(x + 3)(x + 5)

= [(x - 1)(x + 5)].[(x + 1)(x + 3)]

= (x² + 4x - 5)(x² + 4x + 3)

= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]

= (x² + 4x - 1)² - 16 ≥ - 16

- Khi x = 0 ⇒ y = - 15

- Khi x = 1 ⇒ y = 0

- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16

Vậy trên đoạn [0; 1] thì :

GTNN của y = - 16 khi x = √5 - 2

GTLN của y = 0 khi x = 1

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

DD
7 tháng 7 2021

\(f\left(x\right)=4x+\frac{3}{\left(x+1\right)^2}=2x+2+2x+2+\frac{3}{\left(x+1\right)^2}-4\ge3\sqrt[3]{\left(2x+2\right)^2.\frac{3}{\left(x+1\right)^2}}-4\)

\(=3\sqrt[3]{48}-4\)

Dấu \(=\)khi \(2x+2=\frac{3}{\left(x+1\right)^2}\Leftrightarrow\left(x+1\right)^3=\frac{3}{2}\Leftrightarrow x=\sqrt[3]{\frac{3}{2}}-1\).

DD
7 tháng 7 2021

\(f\left(x\right)=3x^2+\frac{8}{x}=3x^2+\frac{4}{x}+\frac{4}{x}\ge3\sqrt[3]{3x^2.\frac{4}{x}.\frac{4}{x}}=6\sqrt[3]{6}\)

Dấu \(=\)khi \(3x^2=\frac{4}{x}\Leftrightarrow x=\sqrt[3]{\frac{4}{3}}\).