
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


...
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)
=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)
=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0\)
\(\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
Mà \(\left(x+1\right)^2\ge0\)
\(\left(y+1\right)^2\ge0\)
\(\left(z+1\right)^2\ge0\)
\(\Rightarrow x+1=y+1=z+1=0\)
\(\Rightarrow x=y=z=-1\)
\(\Rightarrow P=1+1+1=3\)

a) \(x^3-5x^2+8x-4\)
\(=x^3-2x^2-3x^2+6x+2x-4\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-3x+2\right)\)
\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)
b) \(A=10x^2-15x+8x-12+7\)
\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)
\(A=\left(2x-3\right)\left(5x+4\right)+7\)
Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)
Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)
\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)
Vậy.......

1, Ta có x-y=5 =>(x-y)2=25
=>x2+y2-2xy=25 mà x2+y2=55
=>55-2xy=25 => xy=15
Có (x+y)2=x2+y2+2xy mà x2+y2=55 xy=15
=>(x+y)2=55+2.15=85
2, Có x2+xy=27 => x(x+y)=27 mà x+y=9
=>x.9=27 => x=3
=> y=9-3=6
=> 3x-2y=3.3-2.6=-3
3, Có a+b=1
=> (a+b)2=1 lại có (a+b)2=a2+b2+2ab mà ab=-2
=> a2+b2=1-2.(-2)=5
Có a3+b3=(a+b)(a2-ab+b2)=1.[5-(-2)]=1.7=7

Câu 1:
\(R=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}< =\dfrac{25}{4}\)
Dấu '=' xảy ra khi x=5/2
Câu 3:
\(\Leftrightarrow x^2+4x+4+y^2-2y+1=0\)
=>(x+2)^2+(y-1)^2=0
=>y=1 và x=-2

ta có :x^3+y^3
=(x+y)(x^2-xy+y^2)
=(x+y)(x^2+2xy+y^2-3xy)
=(x+y)[(x+y)^2-3xy]
=3(9+6)
=45
k minh nha
kq:27
Ta có \(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
Do đó \(3^{x^2-Y^2}=3^{\left(x+y\right)\left(x-y\right)}=3^{1\cdot3}=3^3=27\)