Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
p=a^2+b^2 (1)
p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13 và a,b có 1 chẵn 1 lẻ
A=a.x^2-b.y^2 chia hết cho p, nên có thể viết A = p(c.x^2 -d.y^2) với c,d phải nguyên
và c.p = a và d.p = b
thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p
Đặt \(p=8k+5\left(đk:K\in N\right)\)
Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)
\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)
Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)
Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)
Làm tiếp đi
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
\(x^2y+4xy+4y=162x-162\)
\(\Rightarrow y\left(x^2+4x+4\right)=162\left(x-1\right)\)
\(\Rightarrow y=\frac{162\left(x-1\right)}{x^2+4x+4}\)
Vì \(y\in Z\Rightarrow\frac{162\left(x-1\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x-1\right)\left(x+5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x-5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x+4-9\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow162-\frac{1458}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{1458}{\left(x+2\right)^2}\in Z\)
\(\Rightarrow\left(x+2\right)^2\in\left\{729,81,9\right\}\) vì \(\left(x+2\right)^2\) là số chính phương x>0
\(\Rightarrow x+2\in\left\{27,9,3\right\}\)
\(\Rightarrow x\in\left\{25,7,1\right\}\)
\(\Rightarrow y\in\left\{\frac{16}{3},12,0\right\}\)
\(\Rightarrow\left(x,y\right)\in\left\{\left(7,12\right),\left(1,0\right)\right\}\)
Bài 2 :
a,
E, F, G, H lần lượt là trung điểm của các cạnh AB,BC, CD, DA nên ta có:
EF là đường trung bình trong tam giác ABC nên \(\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)
GH là đường trung bình trong tam giác DAC nên \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)
Tứ giác EFGH có \(\hept{\begin{cases}GH//FE\\GH=FE=\frac{1}{2}AC\end{cases}}\) nên EFGH là hình bình hành
b,
EFGH là hình chữ nhật khi và chỉ khi EF vuông góc với FG hay AC vuông góc BD
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu trả lời hay nhất: x² - 4x +y - 6√(y) + 13 = 0
<=> (x^2 - 4x +4) + (√(y)^2 - 6√(y) + 9) = 0
<=> (x-2)^2 + (√(y) -3)^2 = 0
VT >=0 dấu = xảy ra <=> x = 2 ; y = 9
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
<=> ((xy²)² - 16xy³ + 64y²) + (4y^2 - 4xy + x^2) = 0
<=> (xy² - 8y)^2 + (2y - x)^2 = 0
VT >=0 => dấu = <=> xy² - 8y = 0 và 2y - x = 0
<=> y = 0 ; x = 0 hoặc x = 4 ; y = 2 hoặc x = -4 ;y = -2
c/
x² - x²y - y + 8x + 7 = 0
<=> x²(1-y) + 8x - y + 7 = 0
xét delta' = 4^2 - (1-y)(7-y) = 16 - 7 -y^2 + 8y = -(y^2 -8y + 16) +25 = 25 - (y-4)^2
để pt có nghiệm thì delta' >=0
<=> (y-4)^2 <=25
<=> -1<= y <=9
=> max y = 9
=> x = 3/2 hoặc x = -1/2
3/
x² - 6x + 1 =0. nhân cả 2 vế với x^(n-1) ta được
x^(n+1) - 6x^n + x^(n-1) = 0
với S(n) = x1ⁿ +x2ⁿ ta có:
S(n+1) - 6S(n) + S(n-1) = 0
<=> S(n+1) = 6S(n) - S(n-1)
với S(1) = 6
S(2) = 22
=> S(3) nguyên
=> S(4) nguyên
=> S(n) nguyên (do biểu thức truy hồi S(n+1) = 6S(n) - S(n-1))
ta có:
S(1) không chia hết cho 5
S(2) ..............................
=> S(3) = 6S(2) - S(1) = 6.(22 -1) = 6.21 không chia hết cho 5
S(n) và S(n-1) ko chia hết cho 5 =>
S(n+1) = S(n) + S(n-1) ko chia hết cho 5