Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)
b)\(=\frac{3x\left(x+y\right)}{y}\)
c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)
j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
Câu b) bạn xem lại nhé.
Học tốt ^3^
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x^2+\frac{2}{5}y\right)\left(x^2+\frac{2}{5}y\right)=x^4+\frac{4}{5}x^2y+\frac{4}{25}y\)
b\(\left(x^2-\frac{1}{3}\right)\left(x^4+\frac{1}{3}x^2+\frac{1}{9}\right)=\left(x^2-\frac{1}{3}\right)^3-x^2-\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: x khác 1 và - 1
\(\frac{x+1}{2\left(x-1\right)}-\frac{x-1}{2\left(x+1\right)}=\frac{2}{\left(x-1\right)\left(x+1\right)}\)
<=> \(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\frac{4}{2\left(x-1\right)\left(x+1\right)}\)
<=> \(\left(x+1\right)^2-\left(x-1\right)^2=4\)
<=> \(\left(x+1-x+1\right)\left(x+1+x-1\right)=4\)
<=> 2.2x = 4
<=> x = 1 loại
Vậy phương trình vô nghiệm
e trả lời sau đc ko ạ ? ):
\(\frac{x+1}{2x-2}-\frac{x-1}{2x+2}=\frac{2}{x^2-1}\) ĐKXĐ : \(x\ne\pm1\)
\(\frac{x+1}{2\left(x-1\right)}-\frac{x-1}{2\left(x+1\right)}=\frac{2}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{2\left(x+1\right)\left(x-1\right)}=\frac{4}{2\left(x+1\right)\left(x-1\right)}\)
Khử mẫu ta đc : \(\left(x+1\right)^2-\left(x-1\right)^2=4\)
\(4x=4\Leftrightarrow x=1\)Theo ĐKXĐ : ktm
Vậy pt vô nghiệm.
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{x}{20}=\frac{z}{28}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
suy ra :
\(\frac{x}{15}=3\Rightarrow x=45\)
\(\frac{y}{20}=3\Rightarrow y=60\)
\(\frac{z}{28}=3\Rightarrow z=84\)
ghi la de
Ta lấy 4 ; 5 là boi chug
BC(4,5)=20
\(\Rightarrow\frac{x}{3}=\frac{5y}{20};\frac{4y}{20}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\frac{x}{3}=\frac{y}{20}=\frac{z}{7}\) va 2x +3y-z=186
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{7}\) va 2x+3y-z=186
Áp dụng chất tỉ so bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Suy ra :\(\frac{x}{15}=3\Rightarrow x=3.15=45\)
\(\frac{y}{20}=3\Rightarrow y=3.20=60\)
\(\frac{z}{28}=3\Rightarrow z=3.28=84\)
Vậy :................