Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
![](https://rs.olm.vn/images/avt/0.png?1311)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{5}.\frac{8}{27}.\frac{5}{3}=1.\frac{8}{27}.1=\frac{8}{27}\)
\(\frac{7}{19}.\frac{1}{3}+\frac{7}{19}.\frac{2}{3}=\frac{7}{19}.\left(\frac{1}{3}+\frac{2}{3}\right)=\frac{7}{19}.1=\frac{7}{19}\)
\(\frac{12}{5}.4-4.\frac{7}{5}=4\left(\frac{12}{5}-\frac{7}{5}\right)=4.1=4\)
\(\frac{3}{5}x\frac{8}{27}x\frac{5}{3}\)
\(=\frac{3}{5}x\frac{5}{3}x\frac{8}{27}\)
\(=1x\frac{8}{27}\)
\(=\frac{8}{27}\)
\(\frac{7}{19}x\frac{1}{3}+\frac{7}{19}x\frac{2}{3}\)
\(=\frac{7}{19}x\left(\frac{1}{3}+\frac{2}{3}\right)\)
\(=\frac{7}{19}x1=\frac{7}{19}\)
\(\frac{12}{5}x4-4x\frac{7}{5}\)
\(=4x\left(\frac{12}{5}-\frac{7}{5}\right)\)
\(=4x1=4\)
Đúng luôn nên các bn nhớ k mk nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)
\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)
\(\Leftrightarrow2M=\frac{65}{132}\)
\(\Leftrightarrow M=\frac{65}{132}\div2\)
\(\Leftrightarrow M=\frac{65}{264}\)
1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}...\frac{9^2}{8.10}=\frac{\left(2.3.4...9\right)^2}{1.2.\left(3.4...8\right)^2.9.10}=\frac{2^2.9^2}{1.2.9.10}=\frac{18}{10}=\frac{9}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) ( \(\frac{55}{3}\): 15 + \(\frac{26}{3}\) . \(\frac{7}{2}\)) : [(\(\frac{37}{3}\) + \(\frac{62}{7}\)) . \(\frac{7}{18}\)] : \(\frac{-1704}{445}\)
= ( \(\frac{55}{3}\). \(\frac{1}{15}\) + \(\frac{91}{3}\)) : [ \(\frac{445}{21}\) . \(\frac{7}{18}\)] . \(\frac{-445}{1704}\)
= ( \(\frac{11}{9}\)+ \(\frac{91}{3}\)) : \(\frac{445}{54}\). \(\frac{-445}{1704}\) = \(\frac{284}{9}\). \(\frac{54}{445}\). \(\frac{-445}{1704}\)= \(\frac{284}{9}\). (\(\frac{54}{445}\). \(\frac{-445}{1704}\))
= \(\frac{284}{8}\). \(\frac{-9}{284}\)
= \(\frac{-9}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)
ta gọi B là biểu thức thứ2
\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)
\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)
\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)
\(\Rightarrow x=1\)
mk nghĩ vậy bạn ạ, mk mong nó đúng
\(=\frac{1x2x3x...x30x31}{2^{31}x\left(2x3x4x...x31x32\right)}=\frac{1}{2^{31}x32}=\frac{1}{2^{36}}\)