\(\frac{1}{17\cdot19}-\left(\frac{1}{15.17}+\frac{1}{13\cdot15}+...+\frac{1}{3\cdot5}\right)=?\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

= 1/2 .(1/17 - 1/19) - [ 1/2 . ( 1/3 - 1/5 + 1/5 - 1/7 +.....+ 1/15 - 1/17 )]

= 1/2 .( 1/17 - 1/19 ) - 1/2 . ( 1/3 - 1/17 )

= 1/2 .(2/323-14/51)

= -130/969

30 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)

\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)

\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)

30 tháng 1 2017

b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)

\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)

\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)

\(=\frac{5}{4}.\frac{4n}{12n+9}\)

\(=\frac{5n}{12n+9}\)

( sai đề )

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)

Ta có:

\(\left(\right. \frac{13 \frac{2}{9} - 15 \frac{2}{3}}{18 \frac{3}{7} - 17 \frac{1}{4}} \cdot \frac{30^{2} - 5^{4}}{25 - 12 \cdot 5^{2}} \left.\right) \cdot x = \frac{\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17}}{4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17}}\)

Bước 1: Đổi hỗn số về phân số

  • \(13 \frac{2}{9} = \frac{119}{9}\),
  • \(15 \frac{2}{3} = \frac{47}{3}\),
  • \(18 \frac{3}{7} = \frac{129}{7}\),
  • \(17 \frac{1}{4} = \frac{69}{4}\)

Bước 2: Tính toán từng phần

Ta có:

\(\frac{119}{9} - \frac{47}{3} = \frac{119 - 141}{9} = \frac{- 22}{9}\) \(\frac{129}{7} - \frac{69}{4} = \frac{516 - 483}{28} = \frac{33}{28}\) \(30^{2} - 5^{4} = 900 - 625 = 275\) \(25 - 12 \cdot 25 = 25 - 300 = - 275\)

Khi đó:

\(\left(\right. \frac{- 22}{9} \div \frac{33}{28} \cdot \frac{275}{- 275} \left.\right) = \left(\right. \frac{- 22}{9} \cdot \frac{28}{33} \cdot \left(\right. - 1 \left.\right) \left.\right) = \frac{616}{297}\)

Bước 3: Tính vế phải

Tử số:

\(\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17} = \frac{35494}{36465}\)

Mẫu số:

\(4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17} = \frac{149645}{36465}\)

→ Vế phải:

\(\frac{35494}{36465} \div \frac{149645}{36465} = \frac{35494}{149645}\)

Bước 4: Giải phương trình

\(\frac{616}{297} \cdot x = \frac{35494}{149645} \Rightarrow x = \frac{35494}{149645} \cdot \frac{297}{616} = \frac{813}{7118}\)


Vậy:

\(\boxed{x = \frac{813}{7118}}\)

hỉu không =]]]


1 tháng 7 2018

Sửa đề : \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}.\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)

\(\Leftrightarrow\)\(x+1=18\)

\(\Leftrightarrow\)\(x=18-1\)

\(\Leftrightarrow\)\(x=17\)

Vậy \(x=17\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10.\frac{4}{55}=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+\frac{40}{55}=\frac{3}{11}\)

\(\Leftrightarrow\)\(x=\frac{3}{11}-\frac{40}{55}\)

\(\Leftrightarrow\)\(x=\frac{-5}{11}\)

Vậy \(x=\frac{-5}{11}\)

Chúc bạn học tốt ~ 

14 tháng 6 2016

a) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)

                                                              \(=1-\frac{1}{32}=\frac{31}{32}\)

b) \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)\

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)