Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có 15 quả bóng màu xanh, 13 quả bóng màu đỏ và 17 quả bóng màu trắng => Có 45 kết quả có thể. Các kết quả có thể này là đồng khả năng
a) Có 15 quả bóng màu xanh => Có 15 kết quả thuận lợi cho biến cố C
Vậy \(P(C) = \frac{{15}}{{45}} = \frac{1}{3}\)
b) Có 13 quả bóng màu đỏ => Có 13 kết quả thuận lợi cho biến cố D
Vậy \(P(D) = \frac{{13}}{{45}}\)
c) Có 28 kết quả thuận lợi cho biến cố E
Vậy \(P(E) = \frac{{28}}{{45}}\)

a) Xác suất lí thuyết của biến cố “An lấy được bóng xanh” là
\({P_1} = \frac{3}{5}\).
b) Xác suất An lấy được bóng xanh sau 20 lần là:
\({P_2} = \frac{9}{{20}}\)
Xác suất An lấy được bóng xanh sau 40 lần là:
\({P_3} = \frac{{20}}{{40}} = \frac{1}{2}\)
Xác suất An lấy được bóng xanh sau 60 lần là:
\({P_4} = \frac{{32}}{{60}} = \frac{8}{{15}}\)
Xác suất An lấy được bóng xanh sau 80 lần là:
\({P_5} = \frac{{46}}{{80}} = \frac{{23}}{{40}}\)
Xác suất An lấy được bóng xanh sau 100 lần là:
\({P_6} = \frac{{59}}{{100}}\)

a) Xác suất thực nghiệm của biến cố “Lấy được bóng xanh” sau 200 lần thử là \(\frac{{62}}{{200}} = \frac{{31}}{{100}}\).
b) Gọi \(N\) là tổng số quả bóng đỏ trong hộp.
Tổng số quả bóng trong hộp là \(N + 20\).
Xác suất thực nghiệm của biến cố “Lấy được bóng đỏ” sau 200 lần thử là \(\frac{{138}}{{200}} = \frac{{69}}{{100}}\).
Xác suất lí thuyết để “Lấy được bóng đỏ” là \(\frac{N}{{N + 20}}\).
Do số lần lấy bóng là 200 lần đủ lớn nên
\(\frac{N}{{N + 20}} \approx \frac{{69}}{{100}} \Leftrightarrow 100N \approx 69N + 1380 \Leftrightarrow 31N \approx 1380 \Leftrightarrow N \approx 45\)
Vậy có khoảng 45 quả bóng đỏ trong hộp.

Lời giải: tỷ lệ 1/5
Có 6 cặp bóng có thể đã được lấy ra:
Vàng + Vàng / Vàng + Xanh / Xanh + Vàng / Vàng + Đen / Đen + Vàng / Xanh + Đen.
Vì có ít nhất một quả bóng màu vàng nên chắc chắn cặp Xanh + Đen không thể được lấy ra.
Do đó còn lại 5 khả năng. Vì vậy cơ hội cho cặp Vàng + Vàng là 1/5.
Có thể nhiều người không thể chấp nhận đáp án này mà phải là 1/3. Đáp án 1/3 chỉ đúng nếu những quả bóng được rút ra lần lượt và quả bóng đầu tiên là màu vàng.
Tuy nhiên, trong trường hợp 2 quả bóng được rút ra cùng lúc và màu sắc của quả bóng đầu tiên trong 2 quả được đưa ra, thì đáp án 1/5 ở trên mới là chính xác.
Tick nhá

Đáp án đúng là C
Số lần lấy được thẻ màu đỏ là \(50 - 14 = 36\) (lần)
Xác suất thực nghiệm của biến cố “Lấy được thẻ màu đỏ” là \(\frac{{36}}{{50}} = 0,72\)
Ta tính trên phần mềm Excel xác suất của quả bóng màu đen. Ta thực hiện các bước sau:
Bước 1: (chuẩn bị dữ liệu)
Mở phần mềm Excel nhập các giá trị 1, 2, 3, 4, 5, 6, 7, 8 với các ô A1, a2, A3, A4, A5, A6, A7, A8.
Nhập 1 từ “Xanh”, 2 từ “Vang”, 2 từ “Do”, 3 từ “Den” tương ứng vào các ô B1, B2, B3, B4, B5, B6, B7, B8.
Bước 2: (thực hiện lấy bóng)
Trong ô C1 ta gõ hàm “=RANDBETWEEN(1;8)”
Trong ô D1 ta gõ hàm “=VLOOKUP(C1;A1; B8; 2)”
Copy công thức của 2 ô C1, D1 bằng cách kéo từ 1 đến dòng 200.
Kết quả lấy bóng 200 lần được cho trong cột D từ dòng 1 đến dòng 200.
Bước 3. (Tính xác suất thực nghiệm)
Trong ô E1 ghi “xác suất thực nghiệm”
Trong ô E2 nhập hàm “=COUNTIF(D1:D200, “Den”)/200
Bước 4: (Giải thích kết quả)
Ta thu được kết quả như sau:
Như vậy, lần 1 lấy được quả màu vàng, lần 2 lấy được quả màu đen,… Kết quả của các lần lấy bóng được cho trong cột D. Sau 200 lần, xác suất thực nghiệm của sự kiện: “Lấy được quả bóng màu đen” là: 0,405.
Xác suất của sự kiện: “Lấy được quả bóng không phải màu đen” là:
1 – 0,405 = 0,595.