K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Câu 1:

$(x^2-1)(4x-x^2)=0$

$\Leftrightarrow (x-1)(x+1)x(4-x)=0$

$\Rightarrow x=\pm 1$ hoặc $x=0$ hoặc $x=4$

Vì $x\in\mathbb{N}$ nên $x\in\left\{0;4;1\right\}$

Đáp án B

Câu 2: C

Câu 3: D

AH
Akai Haruma
Giáo viên
29 tháng 11 2021

Câu 4:

ĐKXĐ: $x^2-7x+12\neq 0$

$\Leftrightarrow (x-3)(x-4)\neq 0$

$\Leftrightarrow x-3\neq 0$ và $x-4\neq 0$

$\Leftrightarrow x\neq 3$ và $x\neq 4$

$\Leftrightarrow x\in\mathbb{R}\setminus\left\{3;4\right\}$

Đáp án D

Câu 5:

ĐKXĐ: \(\left\{\begin{matrix} 2-x\geq 0\\ x+7\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 2\\ x\geq -7\end{matrix}\right.\Leftrightarrow x\in [-7;2]\)

Đáp án C.

Câu 6: 

ĐKXĐ: \(\left\{\begin{matrix} 5-2x\geq 0\\ x-1\geq 0\\ (x-2)\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq \frac{5}{2}\\ x>1\\ x\ne 2\end{matrix}\right.\)

16 tháng 6 2020

pleashhhhhhhhhhhh

16 tháng 6 2020

Đề bài là gì vậy ạ?

4 tháng 4 2020

j giúp j ????

4 tháng 4 2020

giải giúp với ae

Người ae

ở đây ko tải đc ảnh nhé!

học tốt

a: f(x)=0

=>(x-3)(x+3)=0

=>x=3 hoặc x=-3

b: f(x)=0

=>(-2x+4)(2x^2+1)=0

=>4-2x=0

=>x=2

22 tháng 2 2017

a)\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a^2+2ab+b^2\ge4ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra khi \(a=b\)

b)Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ab}{c}}=2b\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\end{matrix}\right.\)

Cộng từng vế của 3 BĐT trên rồi thu gọn ta được điều cần chứng minh

Dấu "=" xảy ra khi \(a=b=c\)

c)Áp dụng BĐT AM-GM ta có:

\(\frac{3a+5b}{2}\ge\sqrt{3a\cdot5b}\Leftrightarrow\left(3a+5b\right)^2\ge4\cdot15P\)

\(\Leftrightarrow12^2\ge60P\Leftrightarrow P\le\frac{12}{5}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}a=2\\b=\frac{6}{5}\end{matrix}\right.\)

24 tháng 2 2017

cảm ơn nha ! vui

NV
20 tháng 12 2022

5.

Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)

Để I thuộc \(y=3x-1\)

\(\Rightarrow-4m-2=3.1-1\)

\(\Rightarrow m=-1\)

6.a.

Với \(a\ne0\)

 \(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)

\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)

Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)

NV
20 tháng 12 2022

b.

Thay tọa độ 3 điểm vào pt (P) ta được:

\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)

Pt (P): \(y=x^2-x-1\)

c.

Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:

\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)

hay pt (P) có dạng: \(y=-2x^2+8x+10\)

1
13 tháng 4 2016

 = 100√3 và  ngược hướng với hướng  với E là đỉnh thứ tư của hình bình hành MACB

30 tháng 10 2017

Hoành độ đỉnh: \(\dfrac{-b}{2a}=-\dfrac{-2}{2}=1\)

a > 0 nên đồ thị hướng lên

Vậy HS đồng biến trong khoảng (1;+\(\infty\)) -> Chọn A

30 tháng 10 2017

Đường thẳng y = ax + b đi qua A( -1; 2) và B( 2; -3)

Nên có hpt: \(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(y=-\dfrac{5}{3}x+\dfrac{1}{3}\)

-> Chon B

30 tháng 10 2017

Câu 9: ĐKXĐ: \(3-2x\ge0\)

\(\Leftrightarrow x\le\dfrac{3}{2}\)

-> Chọn B

Câu 10: Bấm máy là ra.