![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n-6=6n-6=6\left(n-1\right)⋮6\)
\(\Rightarrow n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\)
vậy \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho \(6\) (đpcm)
b) ta có : \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-\left(n^2-5n-7n+35\right)\)
\(=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮3⋮4\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\) và \(3\)
vậy \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\) chia hết cho \(4\) và \(3\) (đpcm)
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-\left(n^2+2n-3n-6\right)\\ =n^2+5n-\left(n^2-n-6\right)\\ =n^2+5n-n^2+n+6\\ =\left(n^2-n^2\right)+\left(5n+n\right)+6\\ =6n+6\\ =6\left(n+1\right)⋮6\)
vậy ...
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-\left[\left(n-6\right)^2-1\right]\\ =n^2-1-\left(n-6\right)^2+1\\ =n^2-\left(n-6\right)^2\\ =\left(n+n-6\right)\left(n-n+6\right)\\ =6\left(2n-6\right)\\ =6\cdot2\left(n-3\right)\\ =12\left(n-3\right)⋮4\text{ và }3\)
vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: a;b ϵ Z
Xét hiệu: (a3 + b3) - (a + b)
= (a3 - a) + (b3 - b)
= a.(a2 - 1) + b.(b2 - 1)
= a.(a - 1).(a + 1) + b.(b - 1).(b + 1)
Dễ thấy: a.(a - 1).(a + 1) và b.(b - 1).(b + 1) đều chia hết cho 2 và 3 vì đều là tích 3 số nguyên liên tiếp
Mà (2;3)=1 => a.(a - 1).(a + 1) + b.(b - 1).(b + 1) đều chia hết cho 6
=> (a3 + b3) - (a + b) chia hết cho 6
- Nếu a3 + b3 chia hết cho 6, do (a3 + b3) - (a + b) chia hết cho 6
=> a + b chia hết cho 6 (1)
- Nếu a + b chia hết cho 6, do (a3 + b3) - (a + b) chia hết cho 6
=> a3 + b3 chia hết cho 6 (2)
Từ (1) và (2) => đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6
= 6n - 6 = 6(n - 1) chia hết cho 6
b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35
= 12n - 36 = 12(n - 3) chia hết cho 12
![](https://rs.olm.vn/images/avt/0.png?1311)
a, n(n+5) - (n-3)(n+2)
= n2 + 5n - (n2 + 2n - 3n - 6)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n + 1) chia hết cho 6 (Đpcm)
b, (n-1)(n+1) - (n-7)(n-5)
= n2 + n - n - 1 - (n2 - 5n - 7n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36
= 12(n - 3) chia hết cho 12 (Đpcm)
a) n(n+5)-(n-3)(n+2)
=n^2+5n-(n^2+2n-3n+6)
=n^2+5n-n^2-2n+3n-6
=6n-6
=6(n-1) chia het cho 6 voi moi n thuoc z
b) (n-1)(n+1)-(n-7)(n-5)
=n^2+n-n-1-(n^2-5n-7n+35)
=n^2-1-n^2+12n-35
=12n-36
=12(n-3) chia het cho 12 voi moi n thuoc z
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005 => 20062006 - 20062005 chia hết cho 2005.
b) 79m+1 - 79m = 79m x 79 - 79m = 79m x (79 - 1) = 79m x 78 chia hết cho 78 => 79m+1 - 79m chia hết cho 78.
c) 257 + 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1) = 512 x 5 x 6 = 512 x 30 chia hết cho 30 => 257 + 513 chia hết cho 30.
d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 56 x (64 - 5) = 56 x 49 chia hết cho 49 => 106 - 57 chia hết cho 49.
e) 710 - 79 - 78 = 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41 => 710 - 79 - 78 chia hết cho 41.
f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45 => 817 - 279 - 913 chia hết cho 45.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Đặt G(x)=0
\(\Leftrightarrow3\cdot\left(5x-1\right)\left(3x-1\right)=0\)
=>(5x-1)(3x-1)=0
=>5x-1=0 hoặc 3x-1=0
=>x=1/5 hoặc x=1/3
\(13^3+1=2197+1=2198\)
mà 2198 chia hết cho 7
⇒\(13^3+1\) chia hết cho 7
Ta có:
\(13\equiv-1\left(mod7\right)\)
\(\Rightarrow13^3\equiv\left(-1\right)^3\equiv-1\left(mod7\right)\)
\(\Rightarrow13^3+1\equiv-1+1\equiv0\left(mod7\right)\)
\(\Rightarrow\left(13^3+1\right)⋮7\left(đpcm\right)\)