Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi độ dài vạnh1, cạnh2, cạnh 3, lần lượt là a, b, c( ĐK: a,b , c>0)
Theo đề bài, ta có : a/2=b/3=c/4 và a+b-c=20
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có: x 3 = y 4 = z 5
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi độ dài các cạnh của tam giác đó là a,b,c ( a,b,c thuộc N*,cm)
Theo đề ra: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a+b+c=45 (cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
\(\frac{a}{3}=3\Rightarrow a=9\)
\(\frac{b}{5}=3\Rightarrow b=15\)
\(\frac{c}{7}=3\Rightarrow c=21\)
Vậy độ dài các cạnh của tam giác đó là: 9cm, 15cm,21cm
b,Gọi độ dài các cạnh của tam giác đó là a,b,c ( a,b,c thuộc N*,cm)
cạnh lớn nhất là c, cạnh nhỏ nhất là a
Theo đề ra: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và \(c+a-b=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c+a-b}{7+3-5}=\frac{20}{5}=4\)
\(\frac{a}{3}=4\Rightarrow a=12\)
\(\frac{b}{5}=4\Rightarrow b=20\)
\(\frac{c}{7}=4\Rightarrow c=28\)
Vậy độ dài các cạnh của tam giác đó là: 12cm,20cm,28cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho cạnh bé nhất là 3 phần, cạnh lớn nhất 7 phần, cạnh còn lại 5 phần
Tổng cạnh bé nhất và cạnh lớn nhất hơn cạnh còn lại : (3 + 7) - 5 = 5 (phần)
1 phần tương ứng với : 20 : 5 = 4 (cm)
Độ dài cạnh bé nhất là : 4 . 3 = 12 (cm)
Độ dài cạnh lớn nhất là : 4 . 7 = 28 (cm)
Độ dài cạnh còn lại là : 4 . 5 = 20 (cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Các cạnh `x,y,z` tỉ lệ với `2,4,5 => x:y:z=2:4:5 <=> x/2=y/4=z/5`
Tổng độ dài của cạnh lớn nhất và nhỏ nhất hơn cạnh còn lại `20cm`
`=> z+x=y+20<=>x-y+z=20`
Áp dụng tính chất của dãy tỉ số bằng nhau:
`x/2=y/4=z/6=(x-y+z)/(2-4+6)=20/4=5`
`=>x=2.5=10`
`y=4.5=20`
`z=5.5=25`
Vậy...
Gọi 33 cạnh của tam giác đó lần lượt là x;y;z(cm,0<x<y<z)x;y;z(cm,0<x<y<z).
Theo bài ra ta có: x/2=y/4=z/5 và x+z−y=20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/2=y/4=z/5=x+z−y/2+5−4=20/3
x/2=20/3⇒x=403(tm)
y/4=20/3⇒y=80/3(tm)
z/5=20/3⇒z=100/3(tm)
Vậy độ dài 33 cạnh của tam giác đó lần lượt là: 403cm;803cm;1003cm403cm;803cm;1003cm.
tick cho mình nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )
Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)
+) \(\frac{a}{5}=5\Rightarrow a=25\)
+) \(\frac{b}{4}=5\Rightarrow b=20\)
+) \(\frac{c}{3}=5\Rightarrow c=15\)
Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm
Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)
Theo đề bài , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)
=> \(\frac{c+10}{7}=\frac{c}{5}\)
=> 5(c + 10) = 7c
=> 5c + 50 = 7c
=> 50 = 2c
=> c = 25
=> a + b = 25 + 10 = 35
Áp dụng tính chất dãy tỉ số , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)
=> a = 3.5 = 15
b = 4.5 = 20
I don't now
mik ko biết
sorry
......................