Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Làm biếng viết đủ, bạn cứ tự hiểu là giới hạn khi x tiến tới gì gì đó nhé
a/ \(lim\frac{2x.sinx.cosx}{2sin^2x}=lim\frac{cosx}{\left(\frac{sinx}{x}\right)}=1\)
b/ \(lim\frac{-x}{x\left(\sqrt{1-x}+1\right)}=lim\frac{-1}{\sqrt{1-x}+1}=-\frac{1}{2}\)
c/ \(=lim\frac{1}{x}\left(\frac{x}{x+1}\right)=lim\frac{1}{x+1}=1\)
d/ \(lim\frac{\sqrt{-x}\left(2\sqrt{-x}+1\right)}{\sqrt{-x}\left(5\sqrt{-x}-1\right)}=lim\frac{2\sqrt{-x}+1}{5\sqrt{-x}-1}=\frac{1}{-1}=-1\)

Câu dưới là 1 giới hạn hoàn toàn bình thường (không phải dạng vô định), bạn cứ thay số vào là được thôi
\(\lim\limits_{x\rightarrow0}\left(1-x\right)tan\frac{\pi x}{2}=\left(1-0\right).tan0=1\)

\(=\lim\limits_{x\rightarrow+\infty}\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\)
\(=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\)
\(=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\sqrt{\frac{1}{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\sqrt{\frac{1}{x^3}}}}+1}=\frac{1}{1+1}=\frac{1}{2}\)

1.
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)
\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)
2.
\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:
\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)

\(\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\cdot\sqrt{\dfrac{3x}{x^2-1}}\)
\(=\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^2-x+1\right)\left(x+1\right)\cdot\dfrac{\sqrt{3x}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\)
\(=\lim\limits_{x\rightarrow\left(-1\right)^-}\sqrt{x+1}\cdot\left(x^2-x+1\right)\cdot\sqrt{\dfrac{3x}{x-1}}\)
\(=\sqrt{-1+1}\left[\left(-1\right)^2-\left(-1\right)+1\right]\cdot\sqrt{\dfrac{3\left(-1\right)}{-1-2}}\)
=0
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1+1-\sqrt[]{1-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{x}{1+\sqrt[]{1-x}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[3]{\left(x+1\right)^3}+\sqrt[3]{x+1}+1}+\dfrac{1}{1+\sqrt[]{1-x}}\right)=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)