Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Thay k=5, ta có hpt:
\(\left\{{}\begin{matrix}5x-y=2\\x+5y=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{11}{26}\\y=\dfrac{3}{26}\end{matrix}\right.\)
Vậy hpt có nghiệm là \(\left(\dfrac{11}{26};\dfrac{3}{26}\right)\)
b.ĐK: \(k\ne-\dfrac{1}{k}\)\(\Leftrightarrow k\forall R\)
hpt\(\Leftrightarrow\left\{{}\begin{matrix}kx-y=2\left(1\right)\\kx+k^2y=k\left(2\right)\end{matrix}\right.\)
Trừ hai pt, ta được: \(\left(k^2+1\right)y=k-2\)\(\Leftrightarrow y=\dfrac{k-2}{k^2+1}\)
Thay vào (1), ta có: \(kx=2+\dfrac{k-2}{k^2+1}\)\(\Leftrightarrow x=\dfrac{2k^2+k}{k^3+k}\)\(=\dfrac{2k+1}{k^2+1}\)
\(x+y=\dfrac{3k-1}{k^2+1}\)
\(\dfrac{3k-1}{k^2+1}=\dfrac{-3}{k^2+1}\)
\(\Rightarrow k=\dfrac{-2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Bạn tự giải
b/ Để hệ có vô số nghiệm
\(\Leftrightarrow\frac{k}{1}=\frac{2}{-1}=\frac{2}{1}\)
\(\Rightarrow\) Không tồn tại k thỏa mãn
c/ \(\Leftrightarrow\left\{{}\begin{matrix}2x-2y=2\\kx+2y=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=x-1\\\left(k+2\right)x=4\end{matrix}\right.\)
Với \(k=-2\) hệ vô nghiệm (ktm)
Với \(k\ne-2\Rightarrow x=\frac{4}{k+2}\)
\(x+y=5\Leftrightarrow x+\left(x-1\right)=5\)
\(\Leftrightarrow2x=6\Rightarrow x=3\)
\(\Rightarrow\frac{4}{k+2}=3\Rightarrow k+2=\frac{4}{3}\Rightarrow k=-\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Lê Phước Thịnh20GP
Phạm Thị Diệu Huyền16GP
Vũ Minh Tuấn15GP
Phạm Lan Hương13GP
Trần Thanh Phương10GP
Trên con đường thành công không có dấu chân của kẻ lười biếng8GP
Phạm Minh Quang7GP
Chiyuki Fujito6GP
hellokoko6GP
Nguyễn Ngọc Lộc
Xin lỗi bạn, mình mới học lớp 7 thôi!!