Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
sửa đề tam giác DEF là tam giác gì ?
Vì tam giác DEF có DM là đường trung tuyến
đồng thời là đường phân giác
nên tam giác DEF cân tại D
![](https://rs.olm.vn/images/avt/0.png?1311)
a: góc KBA=1/2*góc ABC
góc DAC=1/2*góc HAC
mà góc ABC=góc HAC
nên góc KBA=góc DAC
góc BAD+góc CAD=90 độ
góc BDA+góc DAH=90 độ
mà góc CAD=góc DAH
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BK vuông góc AD
b: BO là phân giác của góc BA
=>OA=OE
CO là trung trực của AD
=>OA=OD
=>OE=OD
=>OA=OE
=>góc OAE=góc OEA
Vẽ Ox là tia đối của tia OA
góc xOE=góc OAE+góc OEA=2*góc xAE
Chứng minh tương tự, ta được: góc xOD=2*góc xAD
=>góc DOE=2*góc DAE
=2*1/2(góc BAH+góc HAC)=90 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
- Giả sử AD vừa là đường trung tuyến, vừa là đường phân giác của tam giác ABC.
Ta cần chứng minh ∆ABC cân tại A.
Kéo dài AD một đoạn DA1 sao cho DA1 = AD.
- ∆ADB và ∆A1DC có
AD = DA1 (cách vẽ)
BD = CD (do D là trung điểm BC)
⇒ ∆ADB = ∆A1DC (c.g.c)
⇒ (hai góc tương ứng), AB = A1C (hai cạnh tương ứng) (1)
⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)
Từ (1) và (2) ⇒ AB = AC.
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)
b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét ΔABC có
AM vừa là đường phân giác, vừa là đường trung tuyến
nên ΔABC cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
GTvà KL bạn tự ghi nha:
a)Xét ΔABH và ΔDBH, có:
Góc BHA=góc BHD=90 độ
BH là cạnh chung
AH=DH(gt)
=>ΔABH=ΔDBH (c.g.c)
b)Ta có:
góc ABH=gócHBD( vì ΔABH=ΔDBH)
Do đó BC là tia phân giác của góc ACD
Tam giác ABC cân tại A
tam giác ABC là tam giác cân nhé