Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi các điểm thỏa mãn điều kiện có tọa độ là \(\left(a;0\right)\)
Khi đó hệ sau có nghiệm nguyên:\(\hept{\begin{cases}a-2y=3\\a-3y=2\\x-5y=-7\end{cases}\Rightarrow\frac{a-3}{2};\frac{a-2}{3};\frac{a+7}{5}}\) nguyên.
TH1: \(a\ge0.\)
\(\frac{a-3}{2}\in Z\) nên a lẻ; \(\frac{a+7}{5}\in Z\Rightarrow\) a chia 5 dư 3. Kết hợp hai điều kiện trên thì a có tận cùng là 3.
Khi đó a - 2 có tận cùng là 1. Vậy để \(\frac{a-2}{3}\in Z\) thì a - 2 = 34k \(\left(k\in N;k\ge1\right)\)
Vậy a = 2 +34k \(\left(k\in N;k\ge1\right)\)
TH2: a < 0
\(\frac{a-3}{2}\in Z\Rightarrow\)- a là số tự nhiên lẻ. \(\frac{a+7}{5}\in Z\Rightarrow\) -a chia 5 dư 2. Vậy -a có tận cùng là 7, vậy a có tận cùng là 7.
Vậy thì a - 2 có tận cùng là 9. Vậy a - 2 = -34k+2 \(\left(k\in N;k\ge0\right)\)
Hay a = 2 - 34k+2 \(\left(k\in N;k\ge0\right)\)
Tóm lại các điểm thỏa mãn điều kiện của đề bài sẽ có tọa độ là \(\left(2+3^{4k};0\right)\) với \(\left(k\in N;k\ge1\right)\) hoặc \(\left(2-3^{4k+2};0\right)\) với \(\left(k\in N;k\ge0\right)\)
cho 2005 đường thẳng đi qua điểm M thì có bao nhiêu góc được tạo thành bởi các đường thẳng nói trên?


Gọi các đường thẳng đã cho là \(d_1;d_2;d_3;.....;d_{1992}\) và \(A_{ij}\) là giao điểm của \(d_i;d_j\) với \(i,j\in\left[1;1992\right]\)
Xét đường thẳng \(d_n\) bất kỳ trong 1992 đường thẳng trên
Do không có 3 đường nào đồng quy nên \(A_{ij}\notin d_n\)
Giả sử điểm \(A_{ij}\) gần đường thẳng \(d_n\) nhất
Ta đi chứng minh tam giác \(A_{ij}A_{ni}A_{nj}\) là tam giác xanh
Giả sử tam giác này bị một đường thẳng \(d_m\) nào đó cắt thì \(d_m\) cắt ít nhất một trong 2 đoạn \(A_{ij}A_{ni};A_{ij}A_{nj}\)
Giả sử \(d_m\) cắt \(A_{ij}A_{ni}\) tại điểm \(A_{mi}\) thì \(A_{mi}\) gần \(d_n\) nhất ( trái giả thiết )
Vậy mỗi đường thẳng \(d_n\) bất kỳ thì luôn tồn tại một tam giác xanh có cạnh nằm trên \(d_n\)
Khi đó số tam giác xanh không ít hơn \(1992:3=664\)