Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Goi x,y,z lan luot la cac goc cua tam giac tren. ta lap duoc:
x/3=y/5=z/7
Gia xu 60 do la so do cua goc thu nhat thi ta suy ra: x/3=y/5=z/7=60/3=20
=> x=60 ; y=100 ; z=140
Do 60+100+140 khong bang 180 nen tam giac nay khong ton tai.
Gia xu 60 do la so do cua goc thu 2 thi suy ra: x/3=y/5=z/7=60/5=12
=> x=36 ; y=60 ; z=84
Do 36+60+84 bang 180 nen tam giac nay ton tai
Gia xu 60 la so do cua goc thu 3 thi suy ra: x/3=y/5=z/7=60/7
=> x=180/7 ; y=300/7 ; z=60
Do 180/7+300/7+60 khong bang 180 nen tam giac nay khong ton tai
Vay tam giac tren chi co the ton tai khi goc thu 2 hay goc ti le voi 5 cua no co so do la 60 do.
2) goi cac canh cua tam giac nay lan luot la a,b,c. Theo de bai ta co:
a=3k ; b=4k ; c=8k
Vi a+b ( hay 3k+4k=7k) < c ( hay 8k ) nen tam giac nay khong ton tai
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Ta có : x3=y4=x+y3+4=147=2x3=y4=x+y3+4=147=2
=> x = 2 . 3 = 6 ; y = 2 . 4 = 8
b) Ta có : a7=b9a7=b9
=>3a21=2b18=3a−2b21−18=303=10=>3a21=2b18=3a−2b21−18=303=10
=> a = 10 . 7 = 70 ; b = 10 . 9 = 90
c) Ta có : x3=y4=z5=x−y+z3−4+5=204=5x3=y4=z5=x−y+z3−4+5=204=5
=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25
d) Ta có : a4=b7=c10a4=b7=c10
=>2a8=3b21=4c40=2a+3b+4c8+21+40=6969=1=>2a8=3b21=4c40=2a+3b+4c8+21+40=6969=1
=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10
Bài 2:
a) Gọi 3 số a,b,c
Theo dãy số bằng nhau ta có a/2=b/3=c/4 suy ra :a+b+c/2+3+4=99/9=11
Vậy a=22,b=33,c=44
b) Tương tự như vậy ta ra kết quả :
247/4 ;2727/28; 3211/28 ; 6175/28
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 3 cạnh tam giác đó lần lượt là \(a,b,c\). Ta có :
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{8}=\frac{b+c}{12}=\frac{c+a}{10}\Leftrightarrow\frac{a}{3}=\frac{b+c}{12};\frac{b}{5}=\frac{a+c}{10};\frac{c}{7}=\frac{a+b}{8}\)(viết lại cho dễ thấy)
\(\Rightarrow\hept{\begin{cases}4a=b+c\Leftrightarrow a< b+c\\2b=a+c\Leftrightarrow b< a+c\\\frac{8}{7}c=a+b\Leftrightarrow c< a+b\end{cases}}\)
Ta thấy các cạnh của tam giác đều thỏa mãn bất đẳng thức :
Trong một tam giác, tổng độ dài hai cạnh bao giờ cũng lớn hơn cạnh còn lại
do đó có tồn tại một tam giác sao cho 3 cạnh của nó tỉ lệ thụân với 3;5;7
.
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 1 ko bt
Câu 2 :
Gọi độ dài của các cạnh tam giác lần lượt là ,x,y,z.
Vì các cạnh của tam giác tỉ lệ thuận với 3,4,5 nên ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}\)
= \(\dfrac{60}{12}=5\)
Với : \(\dfrac{x}{3}=5\Rightarrow x=15\)
Với : \(\dfrac{y}{4}=5\Rightarrow y=20\)
Với : \(\dfrac{z}{5}=5\Rightarrow z=25\)
Vậy độ dài của các cạnh trong tam giác lần lượt là : 15 cm ; 20 cm ; 25 cm
Câu 4:
Gọi số hs mỗi khối lần lượt là a,b,c, d
Vì số hs của 4 khối tỉ lệ thuận vs 15;14;12 nên ta có :
\(\dfrac{a}{15}=\dfrac{b}{14}=\dfrac{c}{12}\) mà số hs khối 8 it hơn số hs khối 7 nên : b - c = 66 (hs)
=> \(\dfrac{a}{15}=\dfrac{b}{14}=\dfrac{c}{12}\Rightarrow\dfrac{b-c}{14-12}=\dfrac{66}{2}=33\)
Với : \(\dfrac{a}{15}=66\Rightarrow a=990\)
\(\dfrac{b}{14}=66\Rightarrow b=924\)
Do b - c = 66 => 924 - 66 =858
mk chỉ lm đc thế này th chắc sai r đó xl bn nhìu
Câu 1
Vì x và y tỉ lệ nghịch với 5 và 3
\(\Rightarrow\) 5x = 3y = \(\dfrac{x}{3}=\dfrac{y}{5}\) = \(\dfrac{x}{6}=\dfrac{y}{10}\) = \(\dfrac{2x}{12}=\dfrac{3y}{30}\) (1)
Vì y và z tỉ lệ thuận với 10 và 3
\(\Rightarrow\) \(\dfrac{y}{10}=\dfrac{z}{3}\) = \(\dfrac{3y}{30}=\dfrac{4z}{12}\) (2)
Từ (1) và (2) \(\Rightarrow\)\(\dfrac{2x}{12}=\dfrac{3y}{30}\) \(=\dfrac{4z}{12}\)
Mà 2x + 3y + 4z = -54
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x}{12}=\dfrac{3y}{30}\)\(=\dfrac{4z}{12}\) = \(\dfrac{2x+3y+4z}{12+30+12}\) = \(\dfrac{-54}{54}\) = -1
Do đó : \(\dfrac{2x}{12}=-1\Rightarrow x=-1.12:2=-6\)
\(\dfrac{3y}{30}=-1\Rightarrow y=-1.30:3=-10\)
\(\dfrac{4z}{12}=-1\Rightarrow z=-1.12:4=-3\)
Vậy x = -6 ;y = -10 ; z = -3
có hay không một tam gaics mà ba cạnh của nó:
a) tỉ lệ thuận với các số 3; 4; 8?
b) Tỉ lệ thuận với các số 1/3; 1/4; 1/8?
Trả lời:
a) Đéo
b) Đéo
không vì khi đó sẽ vi phạm bất đẳng thức tam giác