
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(73^2-27^2=\left(73+27\right)\left(73-27\right)=100.46=4600\)
b) \(55^2+20^2-25^2+40.45=\left(55^2-25^2\right)+\left(20^2+40.45\right)\)
\(=\left(55-25\right)\left(55+25\right)+\left(40.10+40.45\right)=30.80+40.55\)
\(=40\left(60+55\right)=40.115=4600\)

Bài 1: Bạn xem lại đề. Vế trái cái cuối là +8 hay +10. Nếu là +8 thì có rất nhiều giá trị cả thực cả nguyên của x,y
Bài 2: Áp dụng các HĐT đáng nhớ ta có:
\(M=2(a^3+b^3)-3(a^2+b^2)=2[(a+b)^3-3a^2b-3ab^2]-3[(a+b)^2-2ab]\)
\(=2[(a+b)^3-3ab(a+b)]-3[(a+b)^2-2ab]\)
\(=2[1^3-3ab.1]-3[1^2-2ab]=2(1-3ab)-3(1-2ab)\)
\(=2-6ab-3+6ab=-1\)
Cảm ơn bài 2 của bạn. Còn bài 1 thì mình chép đúng cái đề bài cô cho nha.

Trả lời:
a) x2 + 4y2 + 4xy = x2 + 2.x.2y + (2y)2 = ( x + 2y )2
b) \(\frac{1}{64}-27x^3=\left(\frac{1}{4}\right)^3-\left(3x\right)^3=\left(\frac{1}{4}-3x\right)\left(\frac{1}{16}+\frac{3}{4}x+9x^2\right)\)
c) x3 - 6x2 + 12x - 8 = x3 - 3.x2.2 + 3.x.22 - 23 = ( x - 2 )3
d) x2 - x - y2 - y = ( x2 - y2 ) - ( x + y ) = ( x - y )( x + y ) - ( x + y ) = ( x + y )( x - y - 1 )
e) 5x - 5y + ax - ay = ( 5x - 5y ) + ( ax - ay ) = 5 ( x - y ) + a ( x - y ) = ( x - y )( 5 + a )

\(\left(A-B\right)^2+4AB=A^2-2AB+B^2+4AB=\)\(A^2+2AB+B^2\)
Bản chất của chúng tương đương nhau , 1 số trường hợp dùng dẳng thức trên nhằm mục đích làm xuất hiện nhân tử chung ....

Câu 1:
Nhân từng hạng tử của đa thức/đơn thức này cho từng hạng tử của đa thức/đơn thức kia. Sau đó, thu gọn lại ta được kết quả cần tìm
Câu 2:
Có 7 hằng đẳng thức. Công thức:
1: \(\left(a+b\right)^2=a^2+2ab+b^2\)
2: \(\left(a-b\right)^2=a^2-2ab+b^2\)
3: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
4: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
5: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
6: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
7: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

đợi em tẹo để em nghĩ đã,sắp ra rồi
{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}