K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

@Akai Haruma giúp e với khocroi

5 tháng 4 2020

Bài 1:

\(x^2-2mx+m^2-m-6=0\)

Xét \(\Delta=\left(-2m\right)^2-4\left(m^2-m-6\right)=4m^2-4m^2+4m+24=4m+24>0\Rightarrow m>-6\)

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-m-6\end{matrix}\right.\)

Theo bài ra:

\(\left|x1\right|+\left|x2\right|=8\)

\(\Rightarrow\left(\left|x1\right|+\left|x2\right|\right)^2=64\)

\(\Rightarrow\left(x1+x2\right)^2-2x1x2+2\left(\left|x1x2\right|\right)=64\)

\(\Leftrightarrow\left(2m\right)^2-2.\left(m^2-m-6\right)+2\left(\left|m^2-m-6\right|\right)=64\)

\(\Leftrightarrow\left(2m\right)^2=64\Leftrightarrow4m^2-64=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\) (tm)

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

7 tháng 6 2017

tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Điều kiện: \(\Delta'=m^2-4m+7>0\) (luôn đúng)

Áp dụng định lý Viete, nếu $x_1,x_2$ là nghiệm của PT trên thì:

\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-6\end{matrix}\right.\)

Do đó: \(A=\left ( \frac{x_1}{x_2} \right )^2+\left ( \frac{x_2}{x_1} \right )^2=\left (\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^2}-2\)

\(A=\left ( \frac{x_1}{x_2} \right )^2+\left ( \frac{x_2}{x_1} \right )^2=\left (\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)

\(=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^2}-2=\frac{[(x_1+x_2)^2-2x_1x_2]^2}{(x_1x_2)^2}-2=\frac{[4(m-1)^2-2(2m-6)]^2}{(2m-6)^2}-2=\frac{16(m-1)^4-16(m-1)^2(2m-6)}{(2m-6)^2}+2\)

Để \(A\in\mathbb{Z}\Rightarrow 16(m-1)^4-16(m-1)^2(2m-6)\vdots (2m-6)^2\)

\(\Leftrightarrow 4(m-1)^4-8(m-1)^2(m-3)\vdots (m-3)^2\)

Xét điều kiện yếu hơn, \(\) \(4(m-1)^4-8(m-1)^2(m-3)\vdots m-3\Leftrightarrow 4(m-1)^4\vdots m-3\)

\(\Leftrightarrow 4[(m-1)^4-2^4]+2^6\vdots m-3\)

\((m-1)^4-2^4\vdots m-3\Rightarrow 2^6\vdots m-3\). Mà \(m\in\mathbb{Z}^+\Rightarrow m-3\in \left \{\pm 1,\pm 2,4,8,16,32,64\right\}\)

Thử lại ta thu được \(m\in \left \{1,2,4, 5,7,11\right\}\)

thiếu đề. (2)

12 tháng 5 2021

`(x-1)^2>=0`