
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Trog những HĐT trên chắc là
bn đánh máy thiếu số mũ nhỉ??
Phải ko
1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)
2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(=\left(x-y+z+y-z\right)^2=x^2\)
4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)
\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)
5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)
6. Áp dụng các hằng đẳng thức đáng nhớ

A=(\(\frac{1}{X^3}\)+x3)+(\(\frac{1}{y^3}\)+y3)+(\(\frac{1}{z^3}\)+z3)+3
Áp dung bđt AM-GM(Cosi) cho hai số dương lần lượt ta đc
A>=6khi x=1,y1,z=1



Ta có:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\) \(x+y+z=\frac{xy+yz+xz}{xyz}\)
\(\Leftrightarrow\) \(x+y+z=xy+yz+xz\) ( do \(xyz=1\) )
\(\Leftrightarrow\) \(x+y+z-xy-yz-xz=0\)
\(\Leftrightarrow\) \(xyz-xy-yz-xz+x+y+z-1=0\)
\(\Leftrightarrow\) \(xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+z-1=0\)
\(\Leftrightarrow\) \(\left(z-1\right)\left(xy-y-x+1\right)=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow\) \(x=1\) hoặc \(y=1\) hoặc \(z=1\)
+) Với \(x=1\) thì \(P=\left(1^{19}-1\right)\left(y^5-1\right)\left(z^{1896}-1\right)=0\)
Tương tự với \(y=1\) \(;\) \(z=1\) , ta cũng có \(P=0\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\left(1+1+1\right)^2=9\)
Áp dụng cô si 3 số dương:
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân lại theo từng vế:\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\sqrt[3]{xyz\times\frac{1}{xyz}}=9\times1=9\)(Đpcm)
bài này bạn thêm x,y,z dương nx nhé