\(\frac{b+c-a}{2}< m_a< \frac{b+c}{a}.\)  vớ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

Sửa đề: \(\frac{b+c-a}{2}< m_a< \frac{b+c}{2}\)

Gọi M là trung điểm BC

Xét tg ABM, ta có: AM>AB-BM 

Xét tg ACM, ta có: AM>AC-MC 

=> 2AM>AB+AC-BC 

\(\Rightarrow m_a>\frac{c+b-a}{2}\)(1)  

Trên tia đối tia MA, lấy D sao cho MD=MA   

=> tg AMB= tg DMC => AB=CD 

Xét tg ACD có: AD<AC+CD=AC+AB 

=> 2AM<AC+AB 

\(\Rightarrow m_a< \frac{b+c}{2}\)(2) 

Từ (1)(2) => đpcm

7 tháng 1 2018

Bài2 , 

Ta có\(sin_P^2+cos_P^2=1\)

mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)

^_^

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

16 tháng 8 2020


A B C M H K

A) Lấy M là trung điểm của BC. => AM là đường trung tuyến xuất phát từ đỉnh A (Đoạn thẳng AM được ký hiệu thay cho m a).

AB = c; AC = b; BC = a. Kẻ BH vuông góc với AM, CK vuông góc với AM.

Ta có: a^2 = BC^2 = (BM + MC)^2 = (2.BM)^2 = 4.BM^2 = 4.CM^2.

Theo định lý Pytago => c^2 = AB^2 = BH^2 + AH^2; BM^2 = BH^2 + HM^2.

=> 2.AB^2 - 2.BM^2 = 2(AH^2 - HM^2) = 2(AH + MH).(AH - MH) = 2.AM.(AH - MH). (1)

Theo định lý Pytago => b^2 = AC^2 = CK^2 + AK^2; CM^2 = CK^2 + MK^2.

=> 2.AC^2 - 2.CM^2 = 2(AK^2 - MK^2) = 2(AK - MK).(AK + MK) = 2.AM.(AK + MK). (2)

Từ  (1) + (2) => 2.AB^2 + 2.AC^2 - 2.BM^2 - 2.CM^2 = 2.AM(AH - MH) + 2.AM.(AK + MK).

=> 2.AB^2 + 2.AC^2 - 4.BM^2 = 2.AM.(AH - MH + AK + MK).

=> 2.AB^2 + 2.AC^2 - BC^2 = 2.AM.(2.AM).

=> 2.c^2 + 2.b^2 - a^2 = 4.AM^2.

Bạn thay phương trình 2.c^2 + 2.b^2 - a^2 = 4.AM^2 ở trên vào câu a để giải tiếp nhé. Mình chứng minh được gần hết rồi.

16 tháng 8 2020

Lưu ý là BH song song với CK (cả hai cùng vuông góc với AM)

Nên theo định lý Talet, ta có: BM = CM. => HM = KM.

Vừa nãy mình quên ghi vào, bạn thêm vào hộ mình nhé.

21 tháng 12 2017

B c B' A K H

Lấy B' đối xứng với B qua AK  ( K thỏa mãn \(BK\perp AB\)\(AK\perp BK\))

CM được : \(\hept{\begin{cases}BB'=2BK=2AH=2h_a\\AB=AB'\end{cases}}\)

Ta có : \(BB'^2=CB'^2-BC^2\le\left(AB'+AC\right)^2-BC^2=\left(AB+AC\right)^2-BC^2\)

\(\Rightarrow\left(2h_a\right)^2=4h_a^2\le\left(b+c\right)^2-a^2\)

Tương tự , ta có : \(4h_b^2\le\left(a+c\right)^2-b^2\)        và        \(4h_c^2\le\left(a+b\right)^2-c^2\)

Suy ra : \(4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2-a^2-b^2-c^2\)

\(\Rightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)Hay \(P\ge4\)

" = " khi  \(B',A,C\) thẳng hàng \(\Rightarrow A\)là trung điểm của \(B'C\)\(\Rightarrow AH\)là trung tuyến \(\Delta ABC\Rightarrow\Delta ABC\)cân tại \(A\)

               Tương tự , \(\Delta ABC\)  lần lượt cân tại \(B,C\)

                Suy ra : \(\Delta ABC\)  đều 

Vậy \(MIN_P=4\)đạt được khi \(\Delta ABC\)đều