K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2

Giải:

Lấy 1993 số khác nhau trong đó mỗi số đều gồm toàn chữ số 1:

Khi chia một số cho 1993 thì có các số dư là:

0; 1; 2;... ;1992

Số số dư có thể là:

(1992 - 0) : 1 + 1 = 1993

Như vậy trong 1993 số khác nhau mà mỗi số gồm toàn chữ số 1 thì nhất định phải có một số có số dư là 0 khi chia cho 1993.

Vậy luôn tồn tại một số gồm toàn chữ số 1 chia hết cho 1993(đpcm)



18 tháng 10 2019

xét n=0 => không thỏa mãn;n=1 => thỏa mãn; 

xét n\(\ge2\)

với n là số chẵn thì 

19n+1n=(19+1)(19n-1  - 19n-2  +... - 1)+ 2.1n = 20A + 2

18n +2n = (18+2)(18n-1-  18n-2.2 +  18n-3.22  - ... -  2n-1) + 2.2n = 20B +2.2n

=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5

n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1

4k chỉ có chữ số tận cùng là 4 hoặc 6

với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)

với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5)  => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn

xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2  +...+ 1) + (18+2)(18n-1 -  18n-2.2 +...+  2n-1)

=20U +20V chia hết cho 5

vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn

27 tháng 9 2019

+) 18 chia 5 dư 3

=> \(18^n;3^n\) có cùng số dư khi chia cho 5.

+) 19 chia 5 dư 4

=> \(19^n;4^n\)có cùng số dư khi chia cho 5

=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5

+) Chúng ta đi tìm n bằng cách quy nạp:

Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)

Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)

Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)

Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)

Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)

Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)

...

Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.

+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)

(i) Với n = 4k ta có: 

Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1;  \(256^k\)chia 5 dư 1

\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)

=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.

(ii) Với n = 4k + 1ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5

=>  n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iii)  Với n = 4k + 2  ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.

=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5

=>  n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iv)  Với n = 4k + 3ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5  dư 10 => chia hết cho 5

=>  n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

=> n không chia hết cho 4 thì  \(1^n+2^n+3^n+4^n\) chia hết cho 5.

Vậy suy ra  \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.

4 tháng 1 2017

Mình làm được câu cuối: a = 1; b = 2; c = 3

15 tháng 1 2017

Bạn thân iu làm thế nào diễn giải giùm mình với.

2 tháng 11 2016

a) \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )

+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )

+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )

+) \(2n-1=-3\Rightarrow n=-1\) ( loại )

Vậy \(n\in\left\{1;0;2\right\}\)

3 tháng 11 2016

Cho mk hỏi nha cái dấu \(⋮\) là j thế

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

22 tháng 11 2015

dài quá hỏi từng câu thôi nhé

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

14 tháng 11 2016

Ta có: \(25^3=15625\equiv1\left(mod7\right)\)

\(\Rightarrow25^{3k}\equiv1\left(mod7\right)\left(k\in N\right)\)

\(\Rightarrow25^{3k}-1⋮7\)

Như vậy ta dễ dàng tìm được giá trị x = 3k (k ϵ N); x < 17 thỏa mãn \(25^x-1⋮7\) (đpcm)

14 tháng 11 2016

mod7 là j???