Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
de thui nhung mk
phai đi hoc đây
chuc bn hco gioi!
nhae$
Ko có tên
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (Dễ :v)Trong 2 STNLT có 1 số chẵn, 1 số lẻ
Mà số chẵn thì chia hết cho 2 => Cái cần chứng minh
b) Có : ab = 10a + b
ba = 10b + a => ab + ba = 10a + 10b + a+b = (10a +a) + (10b+b) = 11a + 11b = 11(a+b)
Vì a,b là các cs => a,b \(\in\)N => 11(a+b) \(⋮\)11 => ab + ba \(⋮\)11
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Ta có ab/abc là số có 2 chữ số CMR (chữ số hàng đơn vị khác 0).
Đặt ab = 10a + b và abc = 100a + 10b + c.
Theo đề bài, ta có phương trình:
(10a + b + 10b + a)/(100a + 10b + c) chia hết cho 11. (11a + 11b)/(100a + 10b + c) chia hết cho 11.
Điều này có nghĩa là 11a + 11b chia hết cho 100a + 10b + c.
Vì 11a + 11b = 11(a + b) và 100a + 10b + c = 11(9a + b) + c, ta có thể viết lại phương trình trên dưới dạng:
11(a + b) chia hết cho 11(9a + b) + c. Do đó, c chia hết cho 11.
Vậy, c là một số chia hết cho 11.
b)
Ta có abc - cba = 100a + 10b + c - (100c + 10b + a) = 99a - 99c = 99(a - c).
Vì 99(a - c) chia hết cho 99, ta có abc - cba chia hết cho 99.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)theo cấu tạo số ta có:
__
abc=(a+b+c)x2x11. (*1)
từ (*1)ta có:abcchia hết cho11và là số chẵn
b)khi a=1,ta có:
___
1bc=(1+b+c)x22
__
100+bc=22+22 x b+22 x c
78=12x b+21x c (*2)
Vậy 78 là số chẵn ;12x b là số chẵn suy ra 21x ccũng là số chẵn.Do 2 ta thấy c phải nhỏ hơn 4
Vậy c=0 hoặc2
-khi c=0 thì 12x b=78 (không xác định được số b thỏa mãn yêu cầu 0)
-khi c=2thì 12xb+42=78
Vậy c =2
Suy ra :12xb=36 hay b=3
Ta được số cần tìm là:132
__
Vậyabc=132
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
ý đàu tiên:
ta có: \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9
ý thứ 2 đề bài phải là trừ chứ bạn
nếu là trừ thì giải như sau:
\(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)chia hết cho 99