K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Ta có : \(x^4=y^2.z^2=x^2.z^2\)

Từ đẳng thức trên :

\(\Rightarrow x^2=y^2\Leftrightarrow x=y\left(1\right)\)

Thay x = y vào đẳng thức x4 = y2 . z2 ta có :

\(\Rightarrow x^4=x^2.z^2\Rightarrow x^4:x^2=z^2\Rightarrow x^2=z^2\Leftrightarrow x=z\left(2\right)\)

Từ (1) và (2)

=>x = y = z

Thay y;z bằng x vào biểu thức P ta có :

\(\Rightarrow P=\frac{\left(x+y\right).\left(y+z\right).\left(z+x\right)}{x.y.z}\)

\(\Rightarrow P=\frac{\left(x+x\right)\left(x+x\right)\left(x+x\right)}{x.x.x}=\frac{2x^3}{x^3}=2\)

Vậy biểu thức P = 2

9 tháng 7 2017

giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)

\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)

\(\Rightarrow xy=\left(x+y\right)^2\)

Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0 

Vậy ...

NV
2 tháng 9

Giả sử tồn tại các số tự nhiên x,y,z thỏa mãn đề bài.

Ta có tính chất sau: với các số nguyên a,b,c bất kì, thì hai tổng a+b+c và |a|+|b|+|c| luôn có cùng tính chẵn lẻ.

Do đó, \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn có cùng tính chẵn lẻ với \(x-3y+y-5z+z-7x\)

\(x-3y+y-5z+z-7x=-6x-2y-4z=2.\left(-3x-y-2z\right)\) luôn chẵn với mọi số tự nhiên x,y,z

=>\(\) \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn chẵn

Theo giả thiết:

\(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|=9^{x}+11^{y}+13^{z}\)

Do vế trái chẵn theo chứng minh trên, ta suy ra \(9^{x}+11^{y}+13^{z}\) cũng là số chẵn (1).

Mà 9, 11, 13 là các số tự nhiên lẻ, nên \(9^{x};11^{y};13^{z}\) cũng là các số tự nhiên lẻ

=>\(9^{x}+11^{y}+13^{z}\) có kết quả là 1 số lẻ (mâu thuẫn với (1))

Vậy điều giả sử là sai, hay ko tồn tại các số tự nhiên x,y,z thỏa mãn yêu cầu

3 tháng 9

Đề bài:
Tồn tại hay không các số tự nhiên \(x , y , z\) sao cho

\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)


Phân tích:

  • \(x , y , z \in \mathbb{N}\) (số tự nhiên, tức là \(0 , 1 , 2 , 3 , \ldots\)).
  • Vế trái là tổng các giá trị tuyệt đối, mỗi giá trị tuyệt đối có giá trị không âm và tương đối nhỏ nếu \(x , y , z\) nhỏ.
  • Vế phải là tổng các số mũ với cơ số lớn (9, 11, 13) và lũy thừa theo \(x , y , z\), sẽ tăng rất nhanh khi \(x , y , z\)tăng.

Bước 1: So sánh quy mô 2 vế

  • Vế trái:

\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid \leq \mid x \mid + 3 \mid y \mid + \mid y \mid + 5 \mid z \mid + \mid z \mid + 7 \mid x \mid = 8 \mid x \mid + 4 \mid y \mid + 6 \mid z \mid\)

Tức là vế trái lớn nhất cũng chỉ là một số bậc nhất theo \(x , y , z\).

  • Vế phải:

\(9^{x} + 11^{y} + 13^{z}\)

Là hàm số mũ tăng cực nhanh khi \(x , y , z\) tăng.


Bước 2: Kiểm tra trường hợp nhỏ

Thử với \(x = y = z = 0\):

\(\mid 0 - 0 \mid + \mid 0 - 0 \mid + \mid 0 - 0 \mid = 0\)\(9^{0} + 11^{0} + 13^{0} = 1 + 1 + 1 = 3\)

Không thỏa.

Thử \(x = y = z = 1\):

\(\mid 1 - 3 \mid + \mid 1 - 5 \mid + \mid 1 - 7 \mid = 2 + 4 + 6 = 12\)\(9^{1} + 11^{1} + 13^{1} = 9 + 11 + 13 = 33\)

Không thỏa.

Thử \(x = y = z = 2\):

Vế trái:

\(\mid 2 - 6 \mid + \mid 2 - 10 \mid + \mid 2 - 14 \mid = 4 + 8 + 12 = 24\)

Vế phải:

\(9^{2} + 11^{2} + 13^{2} = 81 + 121 + 169 = 371\)

Không thỏa.


Bước 3: Nhận xét

  • Vế phải tăng nhanh hơn vế trái rất nhiều.
  • Vì vế trái là hàm tuyến tính (hoặc độ lớn nhất bậc 1), còn vế phải là hàm mũ, nên với \(x , y , z\) lớn, vế phải rất lớn và vế trái rất nhỏ so với vế phải.

Bước 4: Trường hợp vế phải nhỏ nhất

Để vế phải nhỏ nhất, cần \(x = y = z = 0\) (hoặc giá trị nhỏ nhất). Với các giá trị nhỏ đã thử thì không thỏa.


Kết luận:

Không tồn tại các số tự nhiên \(x , y , z\) để

\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)

7 tháng 11 2018

Mình cần gấp ai đó giúp mình đi

7 tháng 11 2018

Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)

Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)

\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)

11 tháng 10 2018

kkgkirtgkjssykjhskfsrlhklruwo8tiyfieusykdkwirkuiufysoiiyi

11 tháng 10 2018

Tích trên có số thừa số:

(2012 - 2) : 10 + 1 = 202 (thừa số)

Cứ 4 thừa số thì đem lại cho ta tích có tận cùng là 6.

Mà 202 : 4 = 50 (dư 2)

Khi đó:

(2 x 12 x 22 x 32) x ... x (1962 x 1972 x 1982 x 1992) x 2002 x 2012

Vậy tận cùng của tích là: 6x2x2 có tận cùng là 4.

Câu 2:

Gọi ba số phải tìm là x,y,z 
Ta có: x + y + z = 321,95 và 3x = 4y = 5z 
Từ 3x = 4y = 5z 
Cho ta:
x(13)=y(14)=z(15)=(x+y+z)(13+14...)x(13)=y(14)=z(15)=(x+y+z)(13+14...)(dãy tỉ số bằng nhau)
Do đó: x(13)=411→x=137x(13)=411→x=137
y = 102,75 
z = 82,2 
Vậy, .....