Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì x,y,z là các số dương nên : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\) ; \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\) ; \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}=2\) (1)
Mặt khác ta lại có : \(x+y< x+y+z\Rightarrow\)\(\frac{x}{x+y}>\frac{x}{x+y+z}\)
Tương tự : \(\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}=1\) (2)
Từ (1) và (2) suy ra : \(1< A< 2\) => A không có giá trị nguyên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(A>\frac{x+y+z}{x+y+z}\)
\(A>1\left(1\right)\)
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a,b,m \(\in\) N*) ta có:
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{z+y}{x+y+z}\)
\(A< \frac{2.\left(x+y+z\right)}{x+y+z}\)
\(A< 2\left(2\right)\)
Từ (1) và (2) => 1 < A < 2
=> A không là số nguyên (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 0,5 điểm trong đề thi toán đấy. mk làm rùi nhưng ko chắc chắn lắm. các bạn làm giúp để mk so sánh bài làm nha! cảm ơn nhiều!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left|-x-2011\right|+\left|x+2012\right|\ge\left|-x-2011+x+2012\right|=1\)
\(\Rightarrow A_{min}=1\) khi \(\left\{{}\begin{matrix}x+2011\le0\\x+2012\ge0\end{matrix}\right.\) \(\Rightarrow-2012\le x\le-2011\)
Bài 2:
\(x-y-z=0\Rightarrow\left\{{}\begin{matrix}y-x=-z\\x-z=y\\y+z=x\end{matrix}\right.\)
\(B=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{y+z}{z}\right)=\frac{y.\left(-z\right).x}{xyz}=-1\)
Bài 3:
Gọi chiều dài 3 cạnh tương ứng là \(a,b,c\)
\(\Rightarrow4a=12b=cx\Rightarrow\left\{{}\begin{matrix}a=\frac{cx}{4}\\b=\frac{cx}{12}\end{matrix}\right.\)
Mặt khác theo BĐT tam giác ta có: \(a-b< c< a+b\)
\(\Rightarrow\frac{cx}{4}-\frac{cx}{12}< c< \frac{cx}{4}+\frac{cx}{12}\Rightarrow\frac{x}{4}-\frac{x}{12}< 1< \frac{x}{4}+\frac{x}{12}\)
\(\Rightarrow\frac{x}{6}< 1< \frac{x}{3}\) \(\Rightarrow3< x< 6\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)