
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(\frac{a}{a'}+\frac{b}{b'}=1\) ; \(\frac{b}{b'}+\frac{c}{c'}=1\)
\(\Rightarrow\left(\frac{a}{a'}+\frac{b}{b'}\right)=\left(\frac{b}{b'}+\frac{c}{c'}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{a+b-b+c}{a'+b'-b'+c}=\frac{a+1+c}{a'+1+c'}=\frac{a+c}{a'+c'}\)
\(\Rightarrow\frac{a}{a'}=\frac{c}{c'}\)
=> a.c' = a'.c
=> a.c' = a'.c = b.c' = b'.c = a.b' = a'.b
=> abc là số nguyên âm hoặc dương (*)
=> a'b'c' là số nguyên âm hoặc dương (**)
Từ (*) và (**)
=> -(abc) + a'b'c' = 0 (1)
=> abc+ -(a'b'c') = 0 (2)
Từ (1) và (2) => đpcm

Ta có: (a+b+c)2=a2+b2+c2
<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2
<=>ab+bc+ca=0
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)
Thay (1) vào (2) ta đc:
\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
toán lớp 7 có cái này hả??
Ta có:\((a+b+c)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
<=>\(ab+ac+bc=0\)
Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên
Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)
Nhân với abc cả hai vế
\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)
<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)
mà ab+ac+bc=0
=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)
<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)
<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)
<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)
<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)
<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)
tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0
Ta có \(ab+ac+bc=0\)(1)
mà a,b,c khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)
=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)
=>\({1\over a}+ {1\over b}+ {1\over c}=0\)
Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được

Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow\frac{ab+a'b'}{a'b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\left(1\right)\)
Lại có: \(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow\frac{bc+b'c'}{b'c}=1\Leftrightarrow bc+b'c'=b'c\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)
Từ (1) và (2) => \(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)
\(\Leftrightarrow abc+a'b'c'=a'bc-a'bc+a'b'c-a'b'c\)
\(\Leftrightarrow abc+a'b'c'=0\left(đpcm\right)\)

Ta có: \(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c=a^,bc\left(1\right)\)
Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff\) \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)
Từ\(\left(1\right)\) và \(\left(2\right)\) cộng vế với vế ta được : \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)
\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

\(\frac{a}{a'}\)+\(\frac{b'}{b}\)=1 =>\(\frac{a}{a'}\)*\(\frac{b}{b'}\)+\(\frac{b'}{b}\)*\(\frac{b}{b'}\)=> \(\frac{ab}{a'b'}\)+1=\(\frac{b'}{b}\)=1-\(\frac{c'}{c}\)
=> \(\frac{ab}{a'b'}=\frac{-c}{c'}=>abc=-a'b'c'=>abc+a'b'c'=0\)
nhớ k cho mik nha bạn và cho mik hỏi mik có thể kết bạn với bạn ko?????

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{ac}{c\left(ab+a+1\right)}+\frac{abc}{ac\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{abc+ac+c}+\frac{1}{abc^2+abc+ac}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
\(abc=1\)
=> \(a=\frac{1}{bc}\); \(c=\frac{1}{ab}\)
Thay \(a=\frac{1}{bc}\)và \(c=\frac{1}{ab}\) vào \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)ta được:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)\(=\frac{\frac{1}{bc}}{\frac{1}{bc}.b+\frac{1}{bc}+1}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{bc}.\frac{1}{ab}+\frac{1}{ab}+1}\)
\(=\frac{\frac{1}{bc}}{\frac{b}{bc}+\frac{1}{bc}+\frac{bc}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+1\right)+\frac{ab}{ab}}\)
\(=\frac{\frac{1}{bc}}{\frac{bc+b+1}{bc}}+\frac{b}{bc+b+1}+\frac{\frac{1}{ab}}{\frac{1}{ab}\left(\frac{1}{bc}+\frac{bc}{bc}+ab\right)}\)
\(=\frac{\frac{1.bc}{bc}}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{1}{bc}.b}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{1}{bc}+\frac{bc}{bc}+\frac{b}{bc}}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{\frac{bc+b+1}{bc}}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1.bc}{bc+b+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)
\(=\frac{1+b+bc}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)(đpcm)

làm dc thì làm đi hỏi chi cho mệt, mà cái hình DQ và TLN đẹp đấy