\(x^2-6x+10\) vô nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

\(g\left(x\right)=x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1>0\)

Vậy ta có đpcm

14 tháng 8 2017

ta có g(x) = x2-6x+10

= x2 - 2.x.3 + 32+ 1

= ( x-3)2+ 1

Ta thấy (x-3)2 \(\ge\) 0

=> (x-3)2+1\(\ge\) 1

Vậy đa thức vô nghiệm

Nếu hài lòng với câu trả lời này thì nhấn đúng ủng hộ mình nhé

Rất vui khi được giúp đỡ bạn

8 tháng 8 2018

\(x^2+6x+11\)

\(=\left(x^2+6x+9\right)+2\)

\(=\left(x+3\right)^2+2\)\(>0\)

Vậy pt vô nghiệm

8 tháng 8 2018

\(x^2+6x+11=\left(x^2+2.x.3+3^2\right)+2=\left(x+3\right)^2+2\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+3\right)^2+2\ge2>0\forall x\)

\(\Rightarrow\)đa thức \(x^2+6x+11\) vô nghiệm

                                          đpcm

A=-x2+6x-19

A=-(x2-6x+9)-10

A=-(x-3)2-10

Vì \(\left(x-3\right)^2\ge0\)

Nên \(-\left(x-3\right)^2\le0\)

=>\(A\le-10\)

=>A vô nghiệm

\(A=-x^2+6x-19\)

\(A=-\left(x^2-6x+9+10\right)\)

\(A=-\left(x+3\right)^2-19\)

Vì \(-\left(x+3\right)^2\le\)Với mọi x

\(\Rightarrow A\le-19\)với mọi x

\(\Rightarrow A\)Vô nghiệm

1 tháng 5 2018

Ta có

\(9x^2+6x+10\)

\(=9x^2+3x+3x+1+9\)

\(=3x\left(3x+1\right)+3x+1+9\)

\(=\left(3x+1\right)\left(3x+1\right)+9\)

\(=\left(3x+1\right)^2+9\ge9.Với\forall x\in Q\)

Vậy đa thức trên vô nghiệm

1 tháng 5 2018

\(f\left(x\right)=9x^2+6x+10=\left(3x+1\right)^2+9>0\)

a) Đặt F(x)=0

\(3x^2-6x+3x^3=0\)

\(\Leftrightarrow3x^3+3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)

mà 3>0

nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)

Vậy: Sf(x)={0;-2;1}(1)

c) Thay x=0 vào đa thức g(x), ta được:

\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)

\(=-9+0+0+0=-9\)

mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)

Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

20 tháng 4 2016

Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)

Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)

3 tháng 4 2018

Ta có : 

\(4x^2+6x=0\)

\(\Leftrightarrow\)\(2x\left(2x+3\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{-3}{2}\end{cases}}\)

Vậy nghiệm của đa thức \(g\left(x\right)=4x^2+6x\) là \(x=0\) hoặc \(x=\frac{-3}{2}\)

Chúc bạn học tốt ~ 

3 tháng 4 2018

\(4x^2+6x=0\)

\(\Leftrightarrow2x\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)

bn hc tốt nhé

11 tháng 8 2019

\(f\left(x\right)=x^2-6x+9+1=\left(x^2-3x\right)-\left(3x-9\right)+1\)

\(=x\left(x-3\right)-3\left(x-3\right)+1=\left(x-3\right)^2+1>0\forall x\)

Vậy đa thức vô nghiệm

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha