
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x^2+6x+11\)
\(=\left(x^2+6x+9\right)+2\)
\(=\left(x+3\right)^2+2\)\(>0\)
Vậy pt vô nghiệm
\(x^2+6x+11=\left(x^2+2.x.3+3^2\right)+2=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\)đa thức \(x^2+6x+11\) vô nghiệm
đpcm

A=-x2+6x-19
A=-(x2-6x+9)-10
A=-(x-3)2-10
Vì \(\left(x-3\right)^2\ge0\)
Nên \(-\left(x-3\right)^2\le0\)
=>\(A\le-10\)
=>A vô nghiệm
\(A=-x^2+6x-19\)
\(A=-\left(x^2-6x+9+10\right)\)
\(A=-\left(x+3\right)^2-19\)
Vì \(-\left(x+3\right)^2\le\)Với mọi x
\(\Rightarrow A\le-19\)với mọi x
\(\Rightarrow A\)Vô nghiệm

Ta có
\(9x^2+6x+10\)
\(=9x^2+3x+3x+1+9\)
\(=3x\left(3x+1\right)+3x+1+9\)
\(=\left(3x+1\right)\left(3x+1\right)+9\)
\(=\left(3x+1\right)^2+9\ge9.Với\forall x\in Q\)
Vậy đa thức trên vô nghiệm

a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

Ta có :
\(4x^2+6x=0\)
\(\Leftrightarrow\)\(2x\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{-3}{2}\end{cases}}\)
Vậy nghiệm của đa thức \(g\left(x\right)=4x^2+6x\) là \(x=0\) hoặc \(x=\frac{-3}{2}\)
Chúc bạn học tốt ~
\(4x^2+6x=0\)
\(\Leftrightarrow2x\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)
bn hc tốt nhé

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
\(g\left(x\right)=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1>0\)
Vậy ta có đpcm
ta có g(x) = x2-6x+10
= x2 - 2.x.3 + 32+ 1
= ( x-3)2+ 1
Ta thấy (x-3)2 \(\ge\) 0
=> (x-3)2+1\(\ge\) 1
Vậy đa thức vô nghiệm
Nếu hài lòng với câu trả lời này thì nhấn đúng ủng hộ mình nhé
Rất vui khi được giúp đỡ bạn