Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)
\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)
\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)
\(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)
\(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)
\(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)
\(2.\) \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\ge\frac{b}{1+b}+\frac{c}{1+c}\)
\(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
\(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\) \(1\ge8abc\)
\(\Leftrightarrow\) \(abc\ge\frac{1}{8}\left(đpcm\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\left(a^{\dfrac{1}{3}};b^{\dfrac{1}{3}};c^{\dfrac{1}{3}}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\\\left(a^3;b^3;c^3\right)\rightarrow\left(x^9;y^9;z^9\right)\end{matrix}\right.\)
\(BDT\Leftrightarrow\dfrac{1}{2x^9+3x^3+2}+\dfrac{1}{2y^9+3y^3+2}+\dfrac{1}{2z^9+3z^3+2}\ge\dfrac{3}{7}\)
Ta có BĐT: \(\dfrac{1}{2x^9+3x^3+2}\ge\dfrac{3}{7\left(x^{12}+x^6+1\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(7x^9+x^6+8x^3-1\right)}{7\left(x^6-x^3+1\right)\left(x^6+x^3+1\right)\left(2x^9+3x^3+2\right)}\ge0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge\dfrac{3}{7}\left(\dfrac{1}{x^{12}+x^6+1}+\dfrac{1}{y^{12}+y^6+1}+\dfrac{1}{z^{12}+z^6+1}\right)\)
Cần chứng minh \(\dfrac{1}{x^{12}+x^6+1}+\dfrac{1}{y^{12}+y^6+1}+\dfrac{1}{z^{12}+z^6+1}\ge1\)
Đặt tiếp \(\left(x^6;y^6;z^6\right)\rightarrow\left(n;h;t\right)\) thì có:
\(\dfrac{1}{n^2+n+1}+\dfrac{1}{h^2+h+1}+\dfrac{1}{t^2+t+1}\ge1\forall nht=1;n,h,t>0\)
Cái này đã làm rồi Here - còn tại sao lại đặt và có BĐT phụ như vậy thì ko nói nhé :)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4-2ab^3-2a^3b+2a^2b^2\ge0\)
\(\Leftrightarrow a^3\left(a-2b\right)-b^3\left(a-2b\right)+2a^2b^2\ge0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)\left(a^2+ab+b^2\right)+2a^2b^2\ge0\left(1\right)\)
Do BĐT trên đối xứng,ko mất tính tổng quát giả sử \(a\le b\)
Khi đó \(\left(a-2b\right)\left(a-b\right)\left(a^2+2ab+b^2\right)\ge0\)
\(\Rightarrow\left(1\right)\ge0\left(true\right)\)
P/S:E ko bt chỗ giả sử có đúng ko nx:(((
\(\left(a-b\right)\left(a-2b\right)\left(a^2+ab+b^2\right)\ge0\) ạ.em viết nhầm:(((
\(a^5+b^5\ge a^3b^2+a^2b^3\left(1\right)\)
\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\ge0\)
\(\Leftrightarrow a^3\left(a^2-b^2\right)-b^3\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)\left(a-b\right)\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)
Mà \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\a+b\ge0\left(gt\right)\\a^2+ab+b^2=\left(a+\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2\ge0\forall a,b\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\Leftrightarrow\left(1\right)\) đúng
Chứng minh cái gì cơ :v
Đề thiếu:)