
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



3, \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\Rightarrow\frac{1}{\sqrt{\frac{a}{b+c}}}=\sqrt{\frac{a\left(b+c\right)}{a^2}}.\)
Áp dụng bất đẳng thức Cô si ta có : \(\sqrt{\frac{a\left(b+c\right)}{a^2}}\le\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right).\)
Chứng minh tương tự ta có : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right).\); \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right).\)
Cộng vế với vế các bất đẳng thức cùng chiều ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2.\)( đpcm )
dấu " = " xẩy ra khi a = b = c > 0

Ta làm bài tổng quát như sau:
Cho \(u_n=\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n\) chứng minh \(u_n\)là số tự nhiên chẵn với mọi n là số nguyên dương. (1)
Đặt \(\hept{\begin{cases}2+\sqrt{3}=x\\2-\sqrt{3}=y\end{cases}}\)
\(\Rightarrow u_n=x^n+y^n\)
\(\Rightarrow\hept{\begin{cases}x+y=4\\xy=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}u_1=4\\u_2=14\end{cases}}\)
Xét \(n=1;2\) thì (1) đúng.
Giả sử (1) đúng đến \(n=k\) .
Ta chứng minh (1) đúng với \(n=k+1\)
Ta có:
\(\Rightarrow u_{k+1}=x^{k+1}+y^{k+1}=\left(x+y\right)\left(x^k+y^k\right)-xy\left(x^{k-1}+y^{k-1}\right)=4u_k-u_{k-1}\) là số nguyên dương chẵn.
Vậy theo quy nạp ta có (1) đúng.
Áp dụng vào bài toán ta có điều phải chứng minh.

trước hết ta chứng minh bất đẳng thức tổng quát : với n là số tự nhiên lớn hơn 1 thì :
2√n−2<1+1√2+1√3+...+1√n<2√n−12n−2<1+12+13+...+1n<2n−1 (∗)(∗)
xét số hạng thứ kk trong dãy (2≤k≤n)(2≤k≤n) ta có : 1√k>2√k+√k+1=2(√k+1−√k)1k>2k+k+1=2(k+1−k) và 1√k<2√k+√k−1=2(√k−√k−1)1k<2k+k−1=2(k−k−1)
do đó 1+1√2+...+1√n>2(√2−1+√3−√2+...+√n+1−√n)=2(√n+1−1)>2√n−21+12+...+1n>2(2−1+3−2+...+n+1−n)=2(n+1−1)>2n−2
và 1+1√2+...+1√n<1+2(√2−1+√3−√2+...+√n−√n−1)=1+2(√n−1)=2√n−11+12+...+1n<1+2(2−1+3−2+...+n−n−1)=1+2(n−1)=2n−1
đến đây áp dụng (∗)(∗) với n=100n=100 thì 19<a<2019<a<20 nên a không phải là số tự nhiên.
trước hết ta chứng minh bất đẳng thức tổng quát : với n là số tự nhiên lớn hơn 1 thì :
2√n−2<1+1√2+1√3+...+1√n<2√n−12n−2<1+12+13+...+1n<2n−1 (∗)(∗)
xét số hạng thứ kk trong dãy (2≤k≤n)(2≤k≤n) ta có : 1√k>2√k+√k+1=2(√k+1−√k)1k>2k+k+1=2(k+1−k) và 1√k<2√k+√k−1=2(√k−√k−1)1k<2k+k−1=2(k−k−1)
do đó 1+1√2+...+1√n>2(√2−1+√3−√2+...+√n+1−√n)=2(√n+1−1)>2√n−21+12+...+1n>2(2−1+3−2+...+n+1−n)=2(n+1−1)>2n−2
và 1+1√2+...+1√n<1+2(√2−1+√3−√2+...+√n−√n−1)=1+2(√n−1)=2√n−11+12+...+1n<1+2(2−1+3−2+...+n−n−1)=1+2(n−1)=2n−1
đến đây áp dụng (∗)(∗) với n=100n=100 thì 19<a<2019<a<20 nên a không phải là số tự nhiên.
\(A=\sqrt{8000^2+8000^28001^2+8001^2}\)
Đặt \(8000=a\Rightarrow8001=a+1\\ \)
\(\Rightarrow A=\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{\left(2a+1\right)^2}=2a+1\)
Tự lm nốt nha.