
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
Ta có
32010=(33)670≡1670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005≡(−1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13

a
Nhóm 2 số từ trái sang phải, ta được
S=(2+22) +(2^3+2^4)+......+(2^23+2^24)
S=3+2^3(1+2)+...........+2^23(1+2)
S=3 + 2^3.3+........+2^23.3
S=3(1+2^3+.........+2^23) chia hết cho 3 vì có 3 chia hết cho 3
b
Nhóm 3 số từ trái sang phải, ta được
S=(2+22+2^3+(2^4+2^5+2^6)+...........+(2^22+2^23+2^24)
S=14+2^3(2+2^2+2^3)+...........+2^21(2+2^2+2^3)
S=14+2^3.14+....................+2^21.14
S=14.(1+2^3+..................+2^21)
Có 14 = 2.7 chia hết cho 7 => S chia hết cho 7
c
Nhóm 4 số từ trái sang phải, ta có
S=(2+2^2+2^3+2^4)+................+(2^21+2^22+2^23+2^24)
S=30+...................+2^20.30
S=30(1+...........+2^20)
Có 30=5.7=>30 chia hết cho 5=> S chia hết cho 5
Tính tổng :1+4+14+.....+404.
các bạn giải ra giúp mình nha!

a) sai đề.
b) \(3a+14=3a+6+8\) chia hết cho a + 2
\(\Leftrightarrow8\) chia hết cho a + 2
\(\Leftrightarrow a+2\inƯ\left(8\right)\)
\(\Leftrightarrow a+2\in\left\{1;2;4;8\right\}\)
\(\Leftrightarrow a\in\left\{0;2;6\right\}\)

Ta có: 24 \(\equiv\)5 (mod 19)
\(\Rightarrow\)241917 \(\equiv\)51917 (mod 19)
14 \(\equiv\)-5 (mod 19)
\(\Rightarrow\)141917 \(\equiv\)-51917 (mod 19)
\(\Rightarrow\)241917 + 141917 \(\equiv\)51917 + (-51917) (mod 19)
241917 +141917 \(\equiv\)0 (mod 19)
hay 241917+ 141917 \(⋮\)19 (đpcm)