
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

Ta có:
f(x) = 2x6+3x2+5x3-2x2+4x4-x3+1-4x3-x4.
f(x)=2x6+4x4-x4+5x3-x3-4x3+3x2-2x2+1
f(x)=2x6+3x4+x2+1
Vì 2x6\(\ge\)0
3x4\(\ge\)0
x2\(\ge\)0
\(\Rightarrow\)2x6+3x4+x2+1\(\ge\)1
Do đó f(x) ko có nghiệm

Đa thức f(x)=2x^2-8x+6
Thay x=1
f(x)=2.1^2-8.1+6
=2.1-8.1+6
=2-8+6=0
Vậy x=1 là nghiệm của đa thức f(x)
Thay x=3
f(x)=2.3^2-8.3+6
=2.9-8.3+6
=18-24+6=-6+6=0
Vậy x=3 là nghiệm của đa thức f(x)
\(f\left(1\right)=2.1^2-8.1+6\)
\(f\left(1\right)=2-8+6\)
\(f\left(1\right)=0\)
Vậy x = 1 là nghiệm f(x)
\(f\left(3\right)=2.3^2-8.3+6\)
\(f\left(3\right)=18-24+6\)
\(f\left(3\right)=0\)
Vậy x = 3 là nghiệm f(x)

\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\) > 0 với mọi x
Vậy đa thức f(x) không có nghiệm
Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.
\(\Rightarrow x^2+2x+1+2=0\)
\(\Rightarrow x^2+x+x+1+2=0\)
\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)
\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+2=0\)
\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)
\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)

\(f\left(2n\right)=2.\left(2n\right)^2+3.\left(2n\right)+1=8n^2+6n+1\)
\(f\left(n\right)=2n^2+3n+1\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=6n^2+3n=3\left(2n^2+n\right)⋮3\) (đpcm)

a) F(x) = 3x2 -2x-x4-2x2-4x4+6
= (-x4 -4x4) + ( 3x2 -2x2) -2x+6
= -5x4 + x2 -2x +6
G(x) = -5x4 + ( -x3 +2x3) +( 2x2 +x2) -3
= -5x4+ x3+ 3x2-3
huhuhulàm gần xong r còn câu c đang làm viêt dấu suy ra mà ai dé bấm lộn vô chỗ vẽ hình ...nên nhấn hủy bỏ...âu bt v... là xóa hêt
viết trên máy lâu ắm lun

Ta có:
3\(x^6\)\(\ge\)0 với mọi x
2\(x^4\)\(\ge\)0 với mọi x
\(x^2\)\(\ge\)0 với mọi x
=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x
Vậy f(x) không co nghiệm

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Do \(\left(x+1\right)^2\ge0\Rightarrow f\left(x\right)=\left(x+1\right)^2+2\ge2>0\)
\(\Rightarrow f\left(x\right)\) vô nghiệm
Vậy đa thức f(x) không có nghiệm
\(F\left(x\right)=x^2-2x+2012\)
\(=\left(x^2-2x+1\right)+2011\)
\(=\left(x-1\right)^2+2011\)
\(>0\)
Nếu tìm MIN thì dấu bằng xảy ra tại x=1;khi đó F(x)=2011
\(F\left(x\right)=x^2-2x+2012\)
\(=x^2-x-x+1+2011\)
\(=x\left(x-1\right)-\left(x-1\right)+2011\)
\(=\left(x-1\right)\left(x-1\right)+2001\)
\(=\left(x+1\right)^2+2011\)
Ta thấy : \(F\left(x\right)>0\forall x\)nên \(F\left(x\right)\ne0\forall x\)nên đa thức \(F\left(x\right)\)không có nghệm trong tâph jowpj số thực.
Tham khảo nha !!!