
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow1^3-1+2^3-2+...+50^3-50\)
\(=0+1.2.3+2.3.4+...+49.50.51\)
\(=\frac{49.50.51.52}{4}=1624350\)
Ta lại có:
\(1+2+3+...+50=\frac{50.51}{2}=1275\)
\(\Rightarrow1^3+2^3+...+50^3=1624350+1275=1625625=1275^2\)
Vậy nó chia hết cho 1275
Nhận xét : \(k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2-\left[\frac{k\left(k-1\right)}{2}\right]^2\)
Tương tự,thế vào ta có :
\(1^3+2^3+...+50^3=-\left(\frac{1\cdot2}{2}\right)^2+\left(\frac{1\cdot0}{2}\right)^2-\left(\frac{2\cdot3}{2}\right)^2+\left(\frac{2\cdot1}{2}\right)^2-...\)
\(-\left(\frac{50\cdot51}{2}\right)^2+\left(\frac{50\cdot49}{2}\right)^2\)
\(=\left[\frac{50\left(50-1\right)}{2}\right]^2\)
\(=\left(1+2+3+...+50\right)^2⋮\left(1+2+3+..+50\right)\)
Mà \(1+2+3+...+50=1275\)
=> Ta có đpcm

1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!

a, \(10^m-1⋮19,19⋮19\)
\(\Rightarrow\left(10^m-1\right)\left(10^m+1\right)+19⋮19\)
\(\Rightarrow10^{2m}-1+19⋮19\Rightarrow10^{2m}+18⋮19\)
\(b,\)Ta có : \(3+3^2+3^3+3^4+...+3^{23}+3^{24}+3^{25}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{23}+3^{24}+3^{25}\right)\)
\(=3+3\left(3+3^2+3^3\right)+...+3^{22}\left(3+3^2+3^3\right)\)
\(=3+3.39+...+3^{22}.39\)
\(=3+39\left(3+...+3^{22}\right)\)
Suy ra : B chia 39 dư 3
Vậy : B không chia hết cho 39

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho

1/mình bó tay
2/Gọi d là ƯCLN(2n+3,3n+5)
Hay 3n+5-2n+3 chia hết cho d
Hay 2(3n+5)-3(2n+3) chia hết cho d
Hay 6n+10-6n+9 chia hết cho d
Hay 1 chia hết cho d
Hay d=1
Vậy 2n+3,3n+5 là 2 số nguyên tố cùng nhau
3/bó tay luôn
4/A=2+22+23+24+...+22009+22010
A=(2+22)+(23+24)+...+(22009+22010)
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3(2+23+...+22009) chia hết cho 3
Mặt khác:
A=(2+22+23)+(24+25+26)+...+22008+22009+22010
A=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)
A=2.7+24.7+...22008(1+2+22)
A=7(2+24+...+22008) chia hết cho 7

Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)

b=31+32+...+3300
b=(3+32)+(33+34)+...+(3299+3300)
b=3(1+3)+33(1+3)+...+3299(1+3)
b=4(3+33+...+3299)
b=2.2(3+33+...+3299)
\(\Rightarrow\)b\(⋮\)2
Vậy...
Ta chứng minh \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)
Với n = 1, đẳng thức trên là đúng.
Giả sử đẳng thức trên là đúng với n = k, tức là ta có:
\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)
Ta cần chứng minh đẳng thức đúng với n = k + 1, tức là:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\) (*)
Ta có \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Vậy nên \(VT=\left(1+2+...+k\right)^2+\left(k+1\right)^3=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)
\(\Leftrightarrow\frac{k^4+6k^3+13k^2+12k+4}{4}=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
\(=\left(1+2+...+k+k+1\right)^2=VP\)
Vậy ta có đẳng thức \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)
Từ đó \(1^3+2^3+...+503^3=\left(1+2+...+503\right)^2\)
\(=\left[\frac{\left(1+503\right).503}{2}\right]^2=126756^2\)
Ta thấy ngay nó không chia hết cho 5 nên không chia hết cho 1275.