
- với n=0 ta có 15n+1=1 và 20n+3=3 nên và đó là hai số nguyên tố cùng nhau
- với n là số lẻ thì 20n+3 là số lẻ và 15n+1 là số chẵn nên\(\frac{20n+3}{15n+1}\)là một số thập phân
- với n là số chẵn lớn hơn 0 ta đặt n=2k(k\(\in\)N*)nên ta sẽ có \(\frac{20n+3}{15n+1}\)=\(\frac{20\times2k+3}{15\times2k+1}\)=\(\frac{40k+3}{30k+1}\)=\(\frac{30k+2+10k+1}{30k+1}\)=\(\frac{30k+2}{30k+1}+\frac{10k+1}{30k+1}\)vì 30k+2 và 30k+1 là hai số tự nhiên liên tiếp nên\(\frac{30k+2}{30k+1}\)là số thập phân với k\(\in\)N* và 10k+1<30k+1 nên \(\frac{10k+1}{30k+1}\)là số thập phân vô hạn nên \(\frac{20n+3}{15n+1}\)là số thập phân vô hạn với n là số chẵn lớn hơn 0
- Kết luận đpcm