Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta co: 3+3^3+3^5+...+3^1991 = (3+3^3+3^5)+...+(3^1987+1989+1991) =3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4) =3.91+...+3^1987.91 =(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13 3+3^3+3^5+...+3^1991 =(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991) =3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6) =3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41
![](https://rs.olm.vn/images/avt/0.png?1311)
S=4+32+33+...+3223
S=1+3+32+33+...+3223
S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)
S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)
S=82+3.82+32.82+33.82+...+3119.(1+34)
S=82(3+32+33+...+3119)
vì 82⋮41⇒S⋮41
Vậy S⋮41
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)
=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)
=> \(3S-S=3^{224}-1\)
=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên
Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)
mà \(3^8-1=6560=41.160⋮41\)
=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)
=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề sai nha
S=3+32+33+...+3223
S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)
S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)
S=9840+...+3215.9840
S=9840.(1+...+3215)
S=41.240.(1+...+3215)\(⋮\)41
Vậy S\(⋮\)41
Chúc bn học tốt
Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(S=4+3^2+3^3+.....+3^{223}\)
\(=1+3+3^2+3^3+....+3^{223}\)
\(\Rightarrow3S=3+3^2+3^3+3^{224}\)
\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)
Vì \(3^4\equiv-1\left(mod41\right)\)
\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)
\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)
\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)
Hay \(S⋮41\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.
Đây là đề thi toán tỉnh Bắc Giang nhỉ?
Bạn vào câu hỏi tương tự đi, có đó
Vào đây nè : olm.vn/hoi-dap/detail/239306998482.html