\(K=1+2+2^2+...+2^{2011}\)chia hết cho 15

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

K = (1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+.....+(2^2008+2^2009+2^2010+2^2011)

   = 15+2^4.(1+2+2^2+2^3)+......+2^2008.(1+2+2^2+2^3)

   = 15+2^4.15+.....+2^2008.15

   = 15.(1+2^4+....+2^2008) chia hết cho 15

Tk mk nha

22 tháng 1 2018

2k= 2( 1+ 2 + 22 +.....+22011)

2k=2 + 22 + 23 +......+22012                                                                                                                                                                                                                     -

  k= 2 + 22 + .......+ 22011  +  1                                                                                                                                                                                                                            k=22012-1= 22008 x 2-1 = 22008 x 15 chia het cho 15

30 tháng 7 2017

\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)

\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)

\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)

\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)

\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)

=> đpcm

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

24 tháng 1 2020

a) Ta có: (n2 + n - 1)2 - 1

= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)

= (n2 + n)(n2 + n - 2)

= n(n + 1)(n2 + 2n - n - 2)

= n(n+ 1)[n(n + 2) - (n + 2)]

= n(n + 1)(n - 1)(n + 2)

Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp 

nên 1 thừa số chia hết cho 2

        1 thừa số chia hết cho 3

          1 thừa số chia hết cho 4

mà (2, 3, 4) = 1

=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24

=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)\(\in\)Z

b) Do n chẵn => n có dạng 2k (k \(\in\)Z)

Khi đó, ta có: n3 + 6n2 + 8n

= (2k)3 + 6.(2k)2 + 8.2k

= 8k3 + 24k2 + 16k

= 8k(k2 + 3k + 2)

= 8k(k2 + 2k + k + 2)

= 8k[k(k + 2) + (k + 2)]

= 8k(k + 1)(k + 2)

Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp

nên 1 thừa số chia hết cho 2

   1 thừa số chia hết cho 3

=> k(k + 1)(k + 2) \(⋮\)2.3 = 6

=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48

Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn

30 tháng 1 2021

a) Với \(n\in N\Rightarrow2^{4n}-1=16^n-1=\left(16-1\right).\left(16^{n-1}+16^{n-2}+...+1\right)\)

\(=15.\left(16^{n-1}+16^{n-2}+...+1\right)⋮15\)

b) Với \(n\in N\Rightarrow16^n-15n-1=\left(16^n-1\right)-15n\)

mà \(\left(16^n-1\right)⋮15\left(cma\right);15n⋮15\)

\(\Rightarrow16^n-15n-1⋮15\)